Abstract:Chemical reasoning usually involves complex, multi-step processes that demand precise calculations, where even minor errors can lead to cascading failures. Furthermore, large language models (LLMs) encounter difficulties handling domain-specific formulas, executing reasoning steps accurately, and integrating code effectively when tackling chemical reasoning tasks. To address these challenges, we present ChemAgent, a novel framework designed to improve the performance of LLMs through a dynamic, self-updating library. This library is developed by decomposing chemical tasks into sub-tasks and compiling these sub-tasks into a structured collection that can be referenced for future queries. Then, when presented with a new problem, ChemAgent retrieves and refines pertinent information from the library, which we call memory, facilitating effective task decomposition and the generation of solutions. Our method designs three types of memory and a library-enhanced reasoning component, enabling LLMs to improve over time through experience. Experimental results on four chemical reasoning datasets from SciBench demonstrate that ChemAgent achieves performance gains of up to 46% (GPT-4), significantly outperforming existing methods. Our findings suggest substantial potential for future applications, including tasks such as drug discovery and materials science. Our code can be found at https://github.com/gersteinlab/chemagent
Abstract:Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
Abstract:In retrieval-augmented generation systems, the integration of self-generated documents (SGDs) alongside retrieved content has emerged as a promising strategy for enhancing the performance of large language model. However, previous research primarily focuses on optimizing the use of SGDs, with the inherent properties of SGDs remaining underexplored. Therefore, this paper conducts a comprehensive analysis of different types of SGDs and experiments on various knowledge-intensive tasks. We develop a taxonomy of SGDs grounded in Systemic Functional Linguistics (SFL) to compare the influence of different SGD categories. Our findings offer key insights into what kinds of SGDs most effectively contribute to improving LLM's performance. The results and further fusion methods based on SGD categories also provide practical guidelines for taking better advantage of SGDs to achieve significant advancements in knowledge-driven QA tasks with RAG.
Abstract:Iterative refinement has emerged as an effective paradigm for enhancing the capabilities of large language models (LLMs) on complex tasks. However, existing approaches typically implement iterative refinement at the application or prompting level, relying on autoregressive (AR) modeling. The sequential token generation in AR models can lead to high inference latency. To overcome these challenges, we propose Context-Wise Order-Agnostic Language Modeling (COrAL), which incorporates iterative refinement directly into the LLM architecture while maintaining computational efficiency. Our approach models multiple token dependencies within manageable context windows, enabling the model to perform iterative refinement internally during the generation process. Leveraging the order-agnostic nature of COrAL, we introduce sliding blockwise order-agnostic decoding, which performs multi-token forward prediction and backward reconstruction within context windows. This allows the model to iteratively refine its outputs in parallel in the sliding block, effectively capturing diverse dependencies without the high inference cost of sequential generation. Empirical evaluations on reasoning tasks demonstrate that COrAL improves performance and inference speed, respectively, achieving absolute accuracy gains of $4.6\%$ on GSM8K and $4.0\%$ on LogiQA, along with inference speedups of up to $3.9\times$ over next-token baselines. Preliminary results on code generation indicate a drop in pass rates due to inconsistencies in order-agnostic outputs, highlighting the inherent quality--speed trade-off. Our code is publicly available at https://github.com/YuxiXie/COrAL.
Abstract:Large language models (LLMs) encode vast amounts of knowledge during pre-training (parametric knowledge, or PK) and can further be enhanced by incorporating contextual knowledge (CK). Can LLMs effectively integrate their internal PK with external CK to solve complex problems? In this paper, we investigate the dynamic interaction between PK and CK, categorizing their relationships into four types: Supportive, Complementary, Conflicting, and Irrelevant. To support this investigation, we introduce ECHOQA, a benchmark spanning scientific, factual, and commonsense knowledge. Our results show that LLMs tend to suppress their PK when contextual information is available, even when it is complementary or irrelevant. While tailored instructions can encourage LLMs to rely more on their PK, they still struggle to fully leverage it. These findings reveal a key vulnerability in LLMs, raising concerns about their reliability in knowledge-intensive tasks. Resources are available at https://github.com/sitaocheng/Knowledge Interplay.
Abstract:The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agent design. In this paper, we introduce G\"odel Agent, a self-evolving framework inspired by the G\"odel machine, enabling agents to recursively improve themselves without relying on predefined routines or fixed optimization algorithms. G\"odel Agent leverages LLMs to dynamically modify its own logic and behavior, guided solely by high-level objectives through prompting. Experimental results on mathematical reasoning and complex agent tasks demonstrate that implementation of G\"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
Abstract:The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
Abstract:Multimodal large language models (MLLMs) are prone to non-factual or outdated knowledge issues, which can manifest as misreading and misrecognition errors due to the complexity of multimodal knowledge. Previous benchmarks have not systematically analyzed the performance of editing methods in correcting these two error types. To better represent and correct these errors, we decompose multimodal knowledge into its visual and textual components. Different error types correspond to different editing formats, which edits distinct part of the multimodal knowledge. We present MC-MKE, a fine-grained Multimodal Knowledge Editing benchmark emphasizing Modality Consistency. Our benchmark facilitates independent correction of misreading and misrecognition errors by editing the corresponding knowledge component. We evaluate three multimodal knowledge editing methods on MC-MKE, revealing their limitations, particularly in terms of modality consistency. Our work highlights the challenges posed by multimodal knowledge editing and motivates further research in developing effective techniques for this task.
Abstract:While substantial advancements have been made in developing large language models (LLMs), achieving control over their behavior can be difficult. Direct preference optimization (DPO) assumes the existence of a latent reward function to evaluate the responses of LLMs. This assumption indicates a strict preference ordering of different responses to the same input. However, there always exist contradictions of preference in LLMs according to our experimental observations. In this paper, we construct a graph structure of the preference relationship among different responses with self-annotation to find contradictions in the preference order. We propose ContraSolver, an algorithm that traverses all edges on the preference graph to identify those that might cause contradictions. ContraSolver initializes the graph with a maximum spanning tree and identifies contradictory edges, prioritizing the resolution of low-confidence preferences while preserving high-confidence ones. Experimental results on four different generation tasks show that the performance of different LLMs can be largely improved through our completely unsupervised self-alignment. Furthermore, by analyzing the preference graphs of LLMs with and without self-alignment by ContraSolver, we quantify the reduction in contradictions, suggesting that resolving preference contradictions is crucial for achieving better alignment performance.
Abstract:In recent years, substantial advancements have been made in the development of large language models, achieving remarkable performance across diverse tasks. To evaluate the knowledge ability of language models, previous studies have proposed lots of benchmarks based on question-answering pairs. We argue that it is not reliable and comprehensive to evaluate language models with a fixed question or limited paraphrases as the query, since language models are sensitive to prompt. Therefore, we introduce a novel concept named knowledge boundary to encompass both prompt-agnostic and prompt-sensitive knowledge within language models. Knowledge boundary avoids prompt sensitivity in language model evaluations, rendering them more dependable and robust. To explore the knowledge boundary for a given model, we propose projected gradient descent method with semantic constraints, a new algorithm designed to identify the optimal prompt for each piece of knowledge. Experiments demonstrate a superior performance of our algorithm in computing the knowledge boundary compared to existing methods. Furthermore, we evaluate the ability of multiple language models in several domains with knowledge boundary.