Zhejiang University
Abstract:Although applying Mixture of Experts to large language models for learning new tasks is widely regarded as an effective strategy for continuous learning, there still remain two major challenges: (1) As the number of tasks grows, simple parameter expansion strategies can lead to excessively large models. (2) Modifying the parameters of the existing router results in the erosion of previously acquired knowledge. In this paper, we present an innovative framework named LLaVA-CMoE, which is a continuous Mixture of Experts (MoE) architecture without any replay data. Specifically, we have developed a method called Probe-Guided Knowledge Extension (PGKE), which employs probe experts to assess whether additional knowledge is required for a specific layer. This approach enables the model to adaptively expand its network parameters based on task distribution, thereby significantly improving the efficiency of parameter expansion. Additionally, we introduce a hierarchical routing algorithm called Probabilistic Task Locator (PTL), where high-level routing captures inter-task information and low-level routing focuses on intra-task details, ensuring that new task experts do not interfere with existing ones. Our experiments shows that our efficient architecture has substantially improved model performance on the Coin benchmark while maintaining a reasonable parameter count.
Abstract:Huawei has always been committed to exploring the AI application in historical research. Biography generation, as a specialized form of abstractive summarization, plays a crucial role in historical research but faces unique challenges that existing large language models (LLMs) struggle to address. These challenges include maintaining stylistic adherence to historical writing conventions, ensuring factual fidelity, and handling fragmented information across multiple documents. We present AIstorian, a novel end-to-end agentic system featured with a knowledge graph (KG)-powered retrieval-augmented generation (RAG) and anti-hallucination multi-agents. Specifically, AIstorian introduces an in-context learning based chunking strategy and a KG-based index for accurate and efficient reference retrieval. Meanwhile, AIstorian orchestrates multi-agents to conduct on-the-fly hallucination detection and error-type-aware correction. Additionally, to teach LLMs a certain language style, we finetune LLMs based on a two-step training approach combining data augmentation-enhanced supervised fine-tuning with stylistic preference optimization. Extensive experiments on a real-life historical Jinshi dataset demonstrate that AIstorian achieves a 3.8x improvement in factual accuracy and a 47.6% reduction in hallucination rate compared to existing baselines. The data and code are available at: https://github.com/ZJU-DAILY/AIstorian.
Abstract:Bloodstain Pattern Analysis (BPA) helps us understand how bloodstains form, with a focus on their size, shape, and distribution. This aids in crime scene reconstruction and provides insight into victim positions and crime investigation. One challenge in BPA is distinguishing between different types of bloodstains, such as those from firearms, impacts, or other mechanisms. Our study focuses on differentiating impact spatter bloodstain patterns from gunshot bloodstain patterns. We distinguish patterns by extracting well-designed individual stain features, applying effective data consolidation methods, and selecting boosting classifiers. As a result, we have developed a model that excels in both accuracy and efficiency. In addition, we use outside data sources from previous studies to discuss the challenges and future directions for BPA.
Abstract:Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
Abstract:In e-commerce platforms, coupons play a crucial role in boosting transactions. In the customer-to-customer (C2C) marketplace, ensuring the satisfaction of both buyers and sellers is essential. While buyer-focused marketing strategies often receive more attention, addressing the needs of sellers is equally important. Additionally, the existing strategies tend to optimize each promotion independently, resulting in a lack of continuity between promotions and unnecessary costs in the pursuit of short-term impact within each promotion period. We introduce a Dynamic Sequential Coupon Allocation Framework (DSCAF) to optimize item coupon allocation strategies across a series of promotions. DSCAF provides sequential recommendations for coupon configurations and timing to target items. In cases where initial suggestions do not lead to sales, it dynamically adjusts the strategy and offers subsequent solutions. It integrates two predictors for estimating the sale propensity in the current and subsequent rounds of coupon allocation, and a decision-making process to determine the coupon allocation solution. It runs iteratively until the item is sold. The goal of the framework is to maximize Return on Investment (ROI) while ensuring lift Sell-through Rate (STR) remains above a specified threshold. DSCAF aims to optimize sequential coupon efficiency with a long-term perspective rather than solely focusing on the lift achieved in each individual promotion. It has been applied for item coupon allocation in Mercari.
Abstract:With the rapid development of artificial intelligence (AI), large language models (LLMs) have shown strong capabilities in natural language understanding, reasoning, and generation, attracting amounts of research interest in applying LLMs to health and medicine. Critical care medicine (CCM) provides diagnosis and treatment for critically ill patients who often require intensive monitoring and interventions in intensive care units (ICUs). Can LLMs be applied to CCM? Are LLMs just like stochastic parrots or ICU experts in assisting clinical decision-making? This scoping review aims to provide a panoramic portrait of the application of LLMs in CCM. Literature in seven databases, including PubMed, Embase, Scopus, Web of Science, CINAHL, IEEE Xplore, and ACM Digital Library, were searched from January 1, 2019, to June 10, 2024. Peer-reviewed journal and conference articles that discussed the application of LLMs in critical care settings were included. From an initial 619 articles, 24 were selected for final review. This review grouped applications of LLMs in CCM into three categories: clinical decision support, medical documentation and reporting, and medical education and doctor-patient communication. LLMs have advantages in handling unstructured data and do not require manual feature engineering. Meanwhile, applying LLMs to CCM faces challenges, including hallucinations, poor interpretability, bias and alignment challenges, and privacy and ethics issues. Future research should enhance model reliability and interpretability, integrate up-to-date medical knowledge, and strengthen privacy and ethical guidelines. As LLMs evolve, they could become key tools in CCM to help improve patient outcomes and optimize healthcare delivery. This study is the first review of LLMs in CCM, aiding researchers, clinicians, and policymakers to understand the current status and future potentials of LLMs in CCM.
Abstract:In two-sided marketplaces such as online flea markets, recommender systems for providing consumers with personalized item rankings play a key role in promoting transactions between providers and consumers. Meanwhile, two-sided marketplaces face the problem of balancing consumer satisfaction and fairness among items to stimulate activity of item providers. Saito and Joachims (2022) devised an impact-based fair ranking method for maximizing the Nash social welfare based on fair division; however, this method, which requires solving a large-scale constrained nonlinear optimization problem, is very difficult to apply to practical-scale recommender systems. We thus propose a fast solution to the impact-based fair ranking problem. We first transform the fair ranking problem into an unconstrained optimization problem and then design a gradient ascent method that repeatedly executes the Sinkhorn algorithm. Experimental results demonstrate that our algorithm provides fair rankings of high quality and is about 1000 times faster than application of commercial optimization software.
Abstract:The inaugural ACM International Conference on AI-powered Software introduced the AIware Challenge, prompting researchers to explore AI-driven tools for optimizing conference programs through constrained optimization. We investigate the use of Large Language Models (LLMs) for program scheduling, focusing on zero-shot learning and integer programming to measure paper similarity. Our study reveals that LLMs, even under zero-shot settings, create reasonably good first drafts of conference schedules. When clustering papers, using only titles as LLM inputs produces results closer to human categorization than using titles and abstracts with TFIDF. The code has been made publicly available.
Abstract:Currently, many e-commerce websites issue online/electronic coupons as an effective tool for promoting sales of various products and services. We focus on the problem of optimally allocating coupons to customers subject to a budget constraint on an e-commerce website. We apply a robust portfolio optimization model based on customer segmentation to the coupon allocation problem. We also validate the efficacy of our method through numerical experiments using actual data from randomly distributed coupons. Main contributions of our research are twofold. First, we handle six types of coupons, thereby making it extremely difficult to accurately estimate the difference in the effects of various coupons. Second, we demonstrate from detailed numerical results that the robust optimization model achieved larger uplifts of sales than did the commonly-used multiple-choice knapsack model and the conventional mean-variance optimization model. Our results open up great potential for robust portfolio optimization as an effective tool for practical coupon allocation.
Abstract:Weakly supervised text classification (WSTC), also called zero-shot or dataless text classification, has attracted increasing attention due to its applicability in classifying a mass of texts within the dynamic and open Web environment, since it requires only a limited set of seed words (label names) for each category instead of labeled data. With the help of recently popular prompting Pre-trained Language Models (PLMs), many studies leveraged manually crafted and/or automatically identified verbalizers to estimate the likelihood of categories, but they failed to differentiate the effects of these category-indicative words, let alone capture their correlations and realize adaptive adjustments according to the unlabeled corpus. In this paper, in order to let the PLM effectively understand each category, we at first propose a novel form of rule-based knowledge using logical expressions to characterize the meanings of categories. Then, we develop a prompting PLM-based approach named RulePrompt for the WSTC task, consisting of a rule mining module and a rule-enhanced pseudo label generation module, plus a self-supervised fine-tuning module to make the PLM align with this task. Within this framework, the inaccurate pseudo labels assigned to texts and the imprecise logical rules associated with categories mutually enhance each other in an alternative manner. That establishes a self-iterative closed loop of knowledge (rule) acquisition and utilization, with seed words serving as the starting point. Extensive experiments validate the effectiveness and robustness of our approach, which markedly outperforms state-of-the-art weakly supervised methods. What is more, our approach yields interpretable category rules, proving its advantage in disambiguating easily-confused categories.