Abstract:Multimodal Large Language Models (MLLMs) are advancing the ability to reason about complex sports scenarios by integrating textual and visual information. To comprehensively evaluate their capabilities, we introduce SPORTU, a benchmark designed to assess MLLMs across multi-level sports reasoning tasks. SPORTU comprises two key components: SPORTU-text, featuring 900 multiple-choice questions with human-annotated explanations for rule comprehension and strategy understanding. This component focuses on testing models' ability to reason about sports solely through question-answering (QA), without requiring visual inputs; SPORTU-video, consisting of 1,701 slow-motion video clips across 7 different sports and 12,048 QA pairs, designed to assess multi-level reasoning, from simple sports recognition to complex tasks like foul detection and rule application. We evaluate four prevalent LLMs mainly utilizing few-shot learning paradigms supplemented by chain-of-thought (CoT) prompting on the SPORTU-text part. We evaluate four LLMs using few-shot learning and chain-of-thought (CoT) prompting on SPORTU-text. GPT-4o achieves the highest accuracy of 71%, but still falls short of human-level performance, highlighting room for improvement in rule comprehension and reasoning. The evaluation for the SPORTU-video part includes 7 proprietary and 6 open-source MLLMs. Experiments show that models fall short on hard tasks that require deep reasoning and rule-based understanding. Claude-3.5-Sonnet performs the best with only 52.6% accuracy on the hard task, showing large room for improvement. We hope that SPORTU will serve as a critical step toward evaluating models' capabilities in sports understanding and reasoning.
Abstract:Understanding sports is crucial for the advancement of Natural Language Processing (NLP) due to its intricate and dynamic nature. Reasoning over complex sports scenarios has posed significant challenges to current NLP technologies which require advanced cognitive capabilities. Toward addressing the limitations of existing benchmarks on sports understanding in the NLP field, we extensively evaluated mainstream large language models for various sports tasks. Our evaluation spans from simple queries on basic rules and historical facts to complex, context-specific reasoning, leveraging strategies from zero-shot to few-shot learning, and chain-of-thought techniques. In addition to unimodal analysis, we further assessed the sports reasoning capabilities of mainstream video language models to bridge the gap in multimodal sports understanding benchmarking. Our findings highlighted the critical challenges of sports understanding for NLP. We proposed a new benchmark based on a comprehensive overview of existing sports datasets and provided extensive error analysis which we hope can help identify future research priorities in this field.
Abstract:Recent integration of Natural Language Processing (NLP) and multimodal models has advanced the field of sports analytics. This survey presents a comprehensive review of the datasets and applications driving these innovations post-2020. We overviewed and categorized datasets into three primary types: language-based, multimodal, and convertible datasets. Language-based and multimodal datasets are for tasks involving text or multimodality (e.g., text, video, audio), respectively. Convertible datasets, initially single-modal (video), can be enriched with additional annotations, such as explanations of actions and video descriptions, to become multimodal, offering future potential for richer and more diverse applications. Our study highlights the contributions of these datasets to various applications, from improving fan experiences to supporting tactical analysis and medical diagnostics. We also discuss the challenges and future directions in dataset development, emphasizing the need for diverse, high-quality data to support real-time processing and personalized user experiences. This survey provides a foundational resource for researchers and practitioners aiming to leverage NLP and multimodal models in sports, offering insights into current trends and future opportunities in the field.
Abstract:A deep understanding of sports, a field rich in strategic and dynamic content, is crucial for advancing Natural Language Processing (NLP). This holds particular significance in the context of evaluating and advancing Large Language Models (LLMs), given the existing gap in specialized benchmarks. To bridge this gap, we introduce SportQA, a novel benchmark specifically designed for evaluating LLMs in the context of sports understanding. SportQA encompasses over 70,000 multiple-choice questions across three distinct difficulty levels, each targeting different aspects of sports knowledge from basic historical facts to intricate, scenario-based reasoning tasks. We conducted a thorough evaluation of prevalent LLMs, mainly utilizing few-shot learning paradigms supplemented by chain-of-thought (CoT) prompting. Our results reveal that while LLMs exhibit competent performance in basic sports knowledge, they struggle with more complex, scenario-based sports reasoning, lagging behind human expertise. The introduction of SportQA marks a significant step forward in NLP, offering a tool for assessing and enhancing sports understanding in LLMs.
Abstract:This paper presents PathFinder and PathFinderPlus, two novel end-to-end computer vision frameworks designed specifically for advanced setting strategy classification in volleyball matches from a single camera view. Our frameworks combine setting ball trajectory recognition with a novel set trajectory classifier to generate comprehensive and advanced statistical data. This approach offers a fresh perspective for in-game analysis and surpasses the current level of granularity in volleyball statistics. In comparison to existing methods used in our baseline PathFinder framework, our proposed ball trajectory detection methodology in PathFinderPlus exhibits superior performance for classifying setting tactics under various game conditions. This robustness is particularly advantageous in handling complex game situations and accommodating different camera angles. Additionally, our study introduces an innovative algorithm for automatic identification of the opposing team's right-side (opposite) hitter's current row (front or back) during gameplay, providing critical insights for tactical analysis. The successful demonstration of our single-camera system's feasibility and benefits makes high-level technical analysis accessible to volleyball enthusiasts of all skill levels and resource availability. Furthermore, the computational efficiency of our system allows for real-time deployment, enabling in-game strategy analysis and on-the-spot gameplan adjustments.
Abstract:Covariance estimation for matrix-valued data has received an increasing interest in applications including neuroscience and environmental studies. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating the banded and tapering covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are studied and compared to the ones for the usual vector-valued data. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with the potential heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from an electroencephalography study and a gridded temperature anomalies dataset.
Abstract:We propose a novel linear discriminant analysis approach for the classification of high-dimensional matrix-valued data that commonly arises from imaging studies. Motivated by the equivalence of the conventional linear discriminant analysis and the ordinary least squares, we consider an efficient nuclear norm penalized regression that encourages a low-rank structure. Theoretical properties including a non-asymptotic risk bound and a rank consistency result are established. Simulation studies and an application to electroencephalography data show the superior performance of the proposed method over the existing approaches.
Abstract:The characteristics (or numerical patterns) of a feature vector in the transform domain of a perturbation model differ significantly from those of its corresponding feature vector in the input domain. These differences - caused by the perturbation techniques used for the transformation of feature patterns - degrade the performance of machine learning techniques in the transform domain. In this paper, we proposed a nonlinear parametric perturbation model that transforms the input feature patterns to a set of elliptical patterns, and studied the performance degradation issues associated with random forest classification technique using both the input and transform domain features. Compared with the linear transformation such as Principal Component Analysis (PCA), the proposed method requires less statistical assumptions and is highly suitable for the applications such as data privacy and security due to the difficulty of inverting the elliptical patterns from the transform domain to the input domain. In addition, we adopted a flexible block-wise dimensionality reduction step in the proposed method to accommodate the possible high-dimensional data in modern applications. We evaluated the empirical performance of the proposed method on a network intrusion data set and a biological data set, and compared the results with PCA in terms of classification performance and data privacy protection (measured by the blind source separation attack and signal interference ratio). Both results confirmed the superior performance of the proposed elliptical transformation.