Abstract:Understanding sports is crucial for the advancement of Natural Language Processing (NLP) due to its intricate and dynamic nature. Reasoning over complex sports scenarios has posed significant challenges to current NLP technologies which require advanced cognitive capabilities. Toward addressing the limitations of existing benchmarks on sports understanding in the NLP field, we extensively evaluated mainstream large language models for various sports tasks. Our evaluation spans from simple queries on basic rules and historical facts to complex, context-specific reasoning, leveraging strategies from zero-shot to few-shot learning, and chain-of-thought techniques. In addition to unimodal analysis, we further assessed the sports reasoning capabilities of mainstream video language models to bridge the gap in multimodal sports understanding benchmarking. Our findings highlighted the critical challenges of sports understanding for NLP. We proposed a new benchmark based on a comprehensive overview of existing sports datasets and provided extensive error analysis which we hope can help identify future research priorities in this field.
Abstract:Recent integration of Natural Language Processing (NLP) and multimodal models has advanced the field of sports analytics. This survey presents a comprehensive review of the datasets and applications driving these innovations post-2020. We overviewed and categorized datasets into three primary types: language-based, multimodal, and convertible datasets. Language-based and multimodal datasets are for tasks involving text or multimodality (e.g., text, video, audio), respectively. Convertible datasets, initially single-modal (video), can be enriched with additional annotations, such as explanations of actions and video descriptions, to become multimodal, offering future potential for richer and more diverse applications. Our study highlights the contributions of these datasets to various applications, from improving fan experiences to supporting tactical analysis and medical diagnostics. We also discuss the challenges and future directions in dataset development, emphasizing the need for diverse, high-quality data to support real-time processing and personalized user experiences. This survey provides a foundational resource for researchers and practitioners aiming to leverage NLP and multimodal models in sports, offering insights into current trends and future opportunities in the field.
Abstract:The ultra-low latency requirements of 5G/6G applications and privacy constraints call for distributed machine learning systems to be deployed at the edge. With its simple yet effective approach, federated learning (FL) is proved to be a natural solution for massive user-owned devices in edge computing with distributed and private training data. Most vanilla FL algorithms based on FedAvg follow a naive star topology, ignoring the heterogeneity and hierarchy of the volatile edge computing architectures and topologies in reality. In this paper, we conduct a comprehensive survey on the existing work of optimized FL models, frameworks, and algorithms with a focus on their network topologies. After a brief recap of FL and edge computing networks, we introduce various types of edge network topologies, along with the optimizations under the aforementioned network topologies. Lastly, we discuss the remaining challenges and future works for applying FL in topology-specific edge networks.
Abstract:Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Abstract:Learning from Observations (LfO) is a practical reinforcement learning scenario from which many applications can benefit through the reuse of incomplete resources. Compared to conventional imitation learning (IL), LfO is more challenging because of the lack of expert action guidance. In both conventional IL and LfO, distribution matching is at the heart of their foundation. Traditional distribution matching approaches are sample-costly which depend on on-policy transitions for policy learning. Towards sample-efficiency, some off-policy solutions have been proposed, which, however, either lack comprehensive theoretical justifications or depend on the guidance of expert actions. In this work, we propose a sample-efficient LfO approach that enables off-policy optimization in a principled manner. To further accelerate the learning procedure, we regulate the policy update with an inverse action model, which assists distribution matching from the perspective of mode-covering. Extensive empirical results on challenging locomotion tasks indicate that our approach is comparable with state-of-the-art in terms of both sample-efficiency and asymptotic performance.
Abstract:This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been a key solution to sequential decision-making problems. Along with the fast advances of RL in various domains, such as robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process of RL. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which the transfer learning techniques are approachable. We discuss the relationship between transfer learning and other relevant topics from the RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
Abstract:Model-free deep reinforcement learning (RL) has demonstrated its superiority on many complex sequential decision-making problems. However, heavy dependence on dense rewards and high sample-complexity impedes the wide adoption of these methods in real-world scenarios. On the other hand, imitation learning (IL) learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations. In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive, and the quality of demonstrations typically limits the performance of the learning policy. In this work, we propose Self-Adaptive Imitation Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations for highly challenging sparse reward tasks. SAIL bridges the advantages of IL and RL to reduce the sample complexity substantially, by effectively exploiting sup-optimal demonstrations and efficiently exploring the environment to surpass the demonstrated performance. Extensive empirical results show that not only does SAIL significantly improve the sample-efficiency but also leads to much better final performance across different continuous control tasks, comparing to the state-of-the-art.