Abstract:Classifying fine-grained actions in fast-paced, close-combat sports such as fencing and boxing presents unique challenges due to the complexity, speed, and nuance of movements. Traditional methods reliant on pose estimation or fancy sensor data often struggle to capture these dynamics accurately. We introduce FACTS, a novel transformer-based approach for fine-grained action recognition that processes raw video data directly, eliminating the need for pose estimation and the use of cumbersome body markers and sensors. FACTS achieves state-of-the-art performance, with 90% accuracy on fencing actions and 83.25% on boxing actions. Additionally, we present a new publicly available dataset featuring 8 detailed fencing actions, addressing critical gaps in sports analytics resources. Our findings enhance training, performance analysis, and spectator engagement, setting a new benchmark for action classification in tactical sports.
Abstract:Multimodal Large Language Models (MLLMs) are advancing the ability to reason about complex sports scenarios by integrating textual and visual information. To comprehensively evaluate their capabilities, we introduce SPORTU, a benchmark designed to assess MLLMs across multi-level sports reasoning tasks. SPORTU comprises two key components: SPORTU-text, featuring 900 multiple-choice questions with human-annotated explanations for rule comprehension and strategy understanding. This component focuses on testing models' ability to reason about sports solely through question-answering (QA), without requiring visual inputs; SPORTU-video, consisting of 1,701 slow-motion video clips across 7 different sports and 12,048 QA pairs, designed to assess multi-level reasoning, from simple sports recognition to complex tasks like foul detection and rule application. We evaluate four prevalent LLMs mainly utilizing few-shot learning paradigms supplemented by chain-of-thought (CoT) prompting on the SPORTU-text part. We evaluate four LLMs using few-shot learning and chain-of-thought (CoT) prompting on SPORTU-text. GPT-4o achieves the highest accuracy of 71%, but still falls short of human-level performance, highlighting room for improvement in rule comprehension and reasoning. The evaluation for the SPORTU-video part includes 7 proprietary and 6 open-source MLLMs. Experiments show that models fall short on hard tasks that require deep reasoning and rule-based understanding. Claude-3.5-Sonnet performs the best with only 52.6% accuracy on the hard task, showing large room for improvement. We hope that SPORTU will serve as a critical step toward evaluating models' capabilities in sports understanding and reasoning.