Zhejiang University
Abstract:Huawei has always been committed to exploring the AI application in historical research. Biography generation, as a specialized form of abstractive summarization, plays a crucial role in historical research but faces unique challenges that existing large language models (LLMs) struggle to address. These challenges include maintaining stylistic adherence to historical writing conventions, ensuring factual fidelity, and handling fragmented information across multiple documents. We present AIstorian, a novel end-to-end agentic system featured with a knowledge graph (KG)-powered retrieval-augmented generation (RAG) and anti-hallucination multi-agents. Specifically, AIstorian introduces an in-context learning based chunking strategy and a KG-based index for accurate and efficient reference retrieval. Meanwhile, AIstorian orchestrates multi-agents to conduct on-the-fly hallucination detection and error-type-aware correction. Additionally, to teach LLMs a certain language style, we finetune LLMs based on a two-step training approach combining data augmentation-enhanced supervised fine-tuning with stylistic preference optimization. Extensive experiments on a real-life historical Jinshi dataset demonstrate that AIstorian achieves a 3.8x improvement in factual accuracy and a 47.6% reduction in hallucination rate compared to existing baselines. The data and code are available at: https://github.com/ZJU-DAILY/AIstorian.
Abstract:Advances in the field of visual-language contrastive learning have made it possible for many downstream applications to be carried out efficiently and accurately by simply taking the dot product between image and text representations. One of the most representative approaches proposed recently known as CLIP has quickly garnered widespread adoption due to its effectiveness. CLIP is trained with an InfoNCE loss that takes into account both positive and negative samples to help learn a much more robust representation space. This paper however reveals that the common downstream practice of taking a dot product is only a zeroth-order approximation of the optimization goal, resulting in a loss of information during test-time. Intuitively, since the model has been optimized based on the InfoNCE loss, test-time procedures should ideally also be in alignment. The question lies in how one can retrieve any semblance of negative samples information during inference. We propose Distribution Normalization (DN), where we approximate the mean representation of a batch of test samples and use such a mean to represent what would be analogous to negative samples in the InfoNCE loss. DN requires no retraining or fine-tuning and can be effortlessly applied during inference. Extensive experiments on a wide variety of downstream tasks exhibit a clear advantage of DN over the dot product.
Abstract:Datasets for training recommender systems are often subject to distribution shift induced by users' and recommenders' selection biases. In this paper, we study the impact of selection bias on datasets with different quantization. We then leverage two differently quantized datasets from different source distributions to mitigate distribution shift by applying the inverse probability scoring method from causal inference. Empirically, our approach gains significant performance improvement over single-dataset methods and alternative ways of combining two datasets.