Abstract:Multimodal Large Language Models (MLLMs) have shown outstanding capabilities in many areas of multimodal reasoning. Therefore, we use the reasoning ability of Multimodal Large Language Models for environment description and scene understanding in complex transportation environments. In this paper, we propose AccidentBlip2, a multimodal large language model that can predict in real time whether an accident risk will occur. Our approach involves feature extraction based on the temporal scene of the six-view surround view graphs and temporal inference using the temporal blip framework through the vision transformer. We then input the generated temporal token into the MLLMs for inference to determine whether an accident will occur or not. Since AccidentBlip2 does not rely on any BEV images and LiDAR, the number of inference parameters and the inference cost of MLLMs can be significantly reduced, and it also does not incur a large training overhead during training. AccidentBlip2 outperforms existing solutions on the DeepAccident dataset and can also provide a reference solution for end-to-end automated driving accident prediction.
Abstract:Knowledge retrieval with multi-modal queries plays a crucial role in supporting knowledge-intensive multi-modal applications. However, existing methods face challenges in terms of their effectiveness and training efficiency, especially when it comes to training and integrating multiple retrievers to handle multi-modal queries. In this paper, we propose an innovative end-to-end generative framework for multi-modal knowledge retrieval. Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases, even when trained with limited data. We retrieve knowledge via a two-step process: 1) generating knowledge clues related to the queries, and 2) obtaining the relevant document by searching databases using the knowledge clue. In particular, we first introduce an object-aware prefix-tuning technique to guide multi-grained visual learning. Then, we align multi-grained visual features into the textual feature space of the LLM, employing the LLM to capture cross-modal interactions. Subsequently, we construct instruction data with a unified format for model training. Finally, we propose the knowledge-guided generation strategy to impose prior constraints in the decoding steps, thereby promoting the generation of distinctive knowledge clues. Through experiments conducted on three benchmarks, we demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
Abstract:Instruction tuning has recently been recognized as an effective way of aligning Large Language Models (LLMs) to enhance their generalization ability across various tasks. However, when tuning publicly accessible, centralized LLMs with private instruction data, privacy concerns are inevitable. While direct transfer of parameterized modules between models is a plausible approach to address this, its implications and effectiveness need further exploration. This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators. Given the limited understanding of the underlying mechanism of OFT, we perform an empirical analysis on LLMs from the perspectives of representation and functional similarity. Interestingly, our findings reveal a unique modular structure within the layers of LLMs that appears to emerge as the model size expands. Simultaneously, we note subtle but potentially significant changes in representation and intermediate predictions across the layers. Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs. CRaSh significantly boosts performance of OFT with billions of parameters. Furthermore, we investigate the optimal solutions yielded by fine-tuning with and without full model through the lens of loss landscape. Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT. The source code is publicly available at https://github.com/TsinghuaC3I/CRaSh.
Abstract:Speech Entity Linking aims to recognize and disambiguate named entities in spoken languages. Conventional methods suffer gravely from the unfettered speech styles and the noisy transcripts generated by ASR systems. In this paper, we propose a novel approach called Knowledge Enhanced Named Entity Recognition (KENER), which focuses on improving robustness through painlessly incorporating proper knowledge in the entity recognition stage and thus improving the overall performance of entity linking. KENER first retrieves candidate entities for a sentence without mentions, and then utilizes the entity descriptions as extra information to help recognize mentions. The candidate entities retrieved by a dense retrieval module are especially useful when the input is short or noisy. Moreover, we investigate various data sampling strategies and design effective loss functions, in order to improve the quality of retrieved entities in both recognition and disambiguation stages. Lastly, a linking with filtering module is applied as the final safeguard, making it possible to filter out wrongly-recognized mentions. Our system achieves 1st place in Track 1 and 2nd place in Track 2 of NLPCC-2022 Shared Task 2.