Abstract:Large language models (LLMs) have achieved reasonable quality improvements in machine translation (MT). However, most current research on MT-LLMs still faces significant challenges in maintaining translation consistency and accuracy when processing entire documents. In this paper, we introduce DelTA, a Document-levEL Translation Agent designed to overcome these limitations. DelTA features a multi-level memory structure that stores information across various granularities and spans, including Proper Noun Records, Bilingual Summary, Long-Term Memory, and Short-Term Memory, which are continuously retrieved and updated by auxiliary LLM-based components. Experimental results indicate that DelTA significantly outperforms strong baselines in terms of translation consistency and quality across four open/closed-source LLMs and two representative document translation datasets, achieving an increase in consistency scores by up to 4.58 percentage points and in COMET scores by up to 3.16 points on average. DelTA employs a sentence-by-sentence translation strategy, ensuring no sentence omissions and offering a memory-efficient solution compared to the mainstream method. Furthermore, DelTA improves pronoun translation accuracy, and the summary component of the agent also shows promise as a tool for query-based summarization tasks. We release our code and data at https://github.com/YutongWang1216/DocMTAgent.
Abstract:Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks. Techniques like instruction tuning have effectively enhanced the proficiency of LLMs in the downstream task of machine translation. However, the existing approaches fail to yield satisfactory translation outputs that match the quality of supervised neural machine translation (NMT) systems. One plausible explanation for this discrepancy is that the straightforward prompts employed in these methodologies are unable to fully exploit the acquired instruction-following capabilities. To this end, we propose the TasTe framework, which stands for translating through self-reflection. The self-reflection process includes two stages of inference. In the first stage, LLMs are instructed to generate preliminary translations and conduct self-assessments on these translations simultaneously. In the second stage, LLMs are tasked to refine these preliminary translations according to the evaluation results. The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods. Our work presents a promising approach to unleash the potential of LLMs and enhance their capabilities in MT. The codes and datasets are open-sourced at https://github.com/YutongWang1216/ReflectionLLMMT.
Abstract:The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data collection that leverages bilingual dictionaries to generate a dataset, the design of which is driven by the coverage of senses found in these dictionaries. The dataset comprises a subset retrieved from an existing corpus and a smaller synthesized subset which supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our approach outperforms the established baselines on the WMT2022 test sets and also exhibits significant performance improvements in tasks related to word sense disambiguation and specialized terminology translation. These results underscore the effectiveness of LexMatcher in enhancing LLM-based machine translation.
Abstract:Neural Machine Translation (NMT) has made remarkable progress over the past years. However, under-translation and over-translation remain two challenging problems in state-of-the-art NMT systems. In this work, we conduct an in-depth analysis on the underlying cause of under-translation in NMT, providing an explanation from the perspective of decoding objective. To optimize the beam search objective, the model tends to overlook words it is less confident about, leading to the under-translation phenomenon. Correspondingly, the model's confidence in predicting the End Of Sentence (EOS) diminishes when under-translation occurs, serving as a mild penalty for under-translated candidates. Building upon this analysis, we propose employing the confidence of predicting EOS as a detector for under-translation, and strengthening the confidence-based penalty to penalize candidates with a high risk of under-translation. Experiments on both synthetic and real-world data show that our method can accurately detect and rectify under-translated outputs, with minor impact on other correct translations.
Abstract:Knowledge retrieval with multi-modal queries plays a crucial role in supporting knowledge-intensive multi-modal applications. However, existing methods face challenges in terms of their effectiveness and training efficiency, especially when it comes to training and integrating multiple retrievers to handle multi-modal queries. In this paper, we propose an innovative end-to-end generative framework for multi-modal knowledge retrieval. Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases, even when trained with limited data. We retrieve knowledge via a two-step process: 1) generating knowledge clues related to the queries, and 2) obtaining the relevant document by searching databases using the knowledge clue. In particular, we first introduce an object-aware prefix-tuning technique to guide multi-grained visual learning. Then, we align multi-grained visual features into the textual feature space of the LLM, employing the LLM to capture cross-modal interactions. Subsequently, we construct instruction data with a unified format for model training. Finally, we propose the knowledge-guided generation strategy to impose prior constraints in the decoding steps, thereby promoting the generation of distinctive knowledge clues. Through experiments conducted on three benchmarks, we demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
Abstract:Contemporary translation engines built upon the encoder-decoder framework have reached a high level of development, while the emergence of Large Language Models (LLMs) has disrupted their position by offering the potential for achieving superior translation quality. Therefore, it is crucial to understand in which scenarios LLMs outperform traditional NMT systems and how to leverage their strengths. In this paper, we first conduct a comprehensive analysis to assess the strengths and limitations of various commercial NMT systems and MT-oriented LLMs. Our findings indicate that neither NMT nor MT-oriented LLMs alone can effectively address all the translation issues, but MT-oriented LLMs can serve as a promising complement to the NMT systems. Building upon these insights, we explore hybrid methods and propose Cooperative Decoding (CoDec), which treats NMT systems as a pretranslation model and MT-oriented LLMs as a supplemental solution to handle complex scenarios beyond the capability of NMT alone. The results on the WMT22 test sets and a newly collected test set WebCrawl demonstrate the effectiveness and efficiency of CoDec, highlighting its potential as a robust solution for combining NMT systems with MT-oriented LLMs in machine translation.
Abstract:Open-sourced large language models (LLMs) have demonstrated remarkable efficacy in various tasks with instruction tuning. However, these models can sometimes struggle with tasks that require more specialized knowledge such as translation. One possible reason for such deficiency is that instruction tuning aims to generate fluent and coherent text that continues from a given instruction without being constrained by any task-specific requirements. Moreover, it can be more challenging for tuning smaller LLMs with lower-quality training data. To address this issue, we propose a novel framework using examples in comparison to teach LLMs to learn translation. Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning. We evaluate our method on WMT2022 test sets and show that it outperforms existing methods. Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations. Please refer to Github for more details: https://github.com/lemon0830/TIM.
Abstract:Multilingual pre-trained language models have demonstrated impressive (zero-shot) cross-lingual transfer abilities, however, their performance is hindered when the target language has distant typology from source languages or when pre-training data is limited in size. In this paper, we propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally. Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods. On the tasks of XTREME including text classification, sequence labeling, question answering, and sentence retrieval, both base- and large-size language models pre-trained with our proposed method exhibit consistent performance improvement. Furthermore, it provides substantial advantages for low-resource languages in unsupervised sentence retrieval and for target languages that differ greatly from the source language in cross-lingual transfer.
Abstract:We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a {\it dual-teaching} manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER. Code is available at https://github.com/lemon0830/dualNER.
Abstract:Contrastive learning has become a new paradigm for unsupervised sentence embeddings. Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.