Abstract:Federated Reinforcement Learning (FRL) has been deemed as a promising solution for intelligent decision-making in the era of Artificial Internet of Things. However, existing FRL approaches often entail repeated interactions with the environment during local updating, which can be prohibitively expensive or even infeasible in many real-world domains. To overcome this challenge, this paper proposes a novel offline federated policy optimization algorithm, named $\texttt{DRPO}$, which enables distributed agents to collaboratively learn a decision policy only from private and static data without further environmental interactions. $\texttt{DRPO}$ leverages dual regularization, incorporating both the local behavioral policy and the global aggregated policy, to judiciously cope with the intrinsic two-tier distributional shifts in offline FRL. Theoretical analysis characterizes the impact of the dual regularization on performance, demonstrating that by achieving the right balance thereof, $\texttt{DRPO}$ can effectively counteract distributional shifts and ensure strict policy improvement in each federative learning round. Extensive experiments validate the significant performance gains of $\texttt{DRPO}$ over baseline methods.
Abstract:While large language models (LLMs) are empowered with broad knowledge, their task-specific performance is often suboptimal. It necessitates fine-tuning LLMs with task-specific data, but such data may be inaccessible due to privacy concerns. In this paper, we propose a novel approach to enhance LLMs with smaller language models (SLMs) that are trained on clients using their private task-specific data. To enable mutual enhancement between LLMs and SLMs, we propose CrossLM, where the SLMs promote the LLM to generate task-specific high-quality data, and both the LLM and SLMs are enhanced with the generated data. We evaluate CrossLM using publicly accessible language models across a range of benchmark tasks. The results demonstrate that CrossLM significantly enhances the task-specific performance of SLMs on clients and the LLM on the cloud server simultaneously while preserving the LLM's generalization capability.