Abstract:Monocular vision-based target motion estimation is a fundamental challenge in numerous applications. This work introduces a novel bearing-box approach that fully leverages modern 3D detection measurements that are widely available nowadays but have not been well explored for motion estimation so far. Unlike existing methods that rely on restrictive assumptions such as isotropic target shape and lateral motion, our bearing-box estimator can estimate both the target's motion and its physical size without these assumptions by exploiting the information buried in a 3D bounding box. When applied to multi-rotor micro aerial vehicles (MAVs), the estimator yields an interesting advantage: it further removes the need for higher-order motion assumptions by exploiting the unique coupling between MAV's acceleration and thrust. This is particularly significant, as higher-order motion assumptions are widely believed to be necessary in state-of-the-art bearing-based estimators. We support our claims with rigorous observability analyses and extensive experimental validation, demonstrating the estimator's superior performance in real-world scenarios.
Abstract:TeleChat3-MoE is the latest series of TeleChat large language models, featuring a Mixture-of-Experts (MoE) architecture with parameter counts ranging from 105 billion to over one trillion,trained end-to-end on Ascend NPU cluster. This technical report mainly presents the underlying training infrastructure that enables reliable and efficient scaling to frontier model sizes. We detail systematic methodologies for operator-level and end-to-end numerical accuracy verification, ensuring consistency across hardware platforms and distributed parallelism strategies. Furthermore, we introduce a suite of performance optimizations, including interleaved pipeline scheduling, attention-aware data scheduling for long-sequence training,hierarchical and overlapped communication for expert parallelism, and DVM-based operator fusion. A systematic parallelization framework, leveraging analytical estimation and integer linear programming, is also proposed to optimize multi-dimensional parallelism configurations. Additionally, we present methodological approaches to cluster-level optimizations, addressing host- and device-bound bottlenecks during large-scale training tasks. These infrastructure advancements yield significant throughput improvements and near-linear scaling on clusters comprising thousands of devices, providing a robust foundation for large-scale language model development on hardware ecosystems.
Abstract:Fine-tuning Vision Foundation Models (VFMs) with a small number of parameters has shown remarkable performance in Domain Generalized Semantic Segmentation (DGSS). Most existing works either train lightweight adapters or refine intermediate features to achieve better generalization on unseen domains. However, they both overlook the fact that long-term pre-trained VFMs often exhibit artifacts, which hinder the utilization of valuable representations and ultimately degrade DGSS performance. Inspired by causal mechanisms, we observe that these artifacts are associated with non-causal factors, which usually reside in the low- and high-frequency components of the VFM spectrum. In this paper, we explicitly examine the causal and non-causal factors of features within VFMs for DGSS, and propose a simple yet effective method to identify and disentangle them, enabling more robust domain generalization. Specifically, we propose Causal-Tune, a novel fine-tuning strategy designed to extract causal factors and suppress non-causal ones from the features of VFMs. First, we extract the frequency spectrum of features from each layer using the Discrete Cosine Transform (DCT). A Gaussian band-pass filter is then applied to separate the spectrum into causal and non-causal components. To further refine the causal components, we introduce a set of causal-aware learnable tokens that operate in the frequency domain, while the non-causal components are discarded. Finally, refined features are transformed back into the spatial domain via inverse DCT and passed to the next layer. Extensive experiments conducted on various cross-domain tasks demonstrate the effectiveness of Causal-Tune. In particular, our method achieves superior performance under adverse weather conditions, improving +4.8% mIoU over the baseline in snow conditions.
Abstract:Multimodal understanding of tables in real-world contexts is challenging due to the complexity of structure, symbolic density, and visual degradation (blur, skew, watermarking, incomplete structures or fonts, multi-span or hierarchically nested layouts). Existing multimodal large language models (MLLMs) struggle with such WildStruct conditions, resulting in limited performance and poor generalization. To address these challenges, we propose TableMoE, a neuro-symbolic Mixture-of-Connector-Experts (MoCE) architecture specifically designed for robust, structured reasoning over multimodal table data. TableMoE features an innovative Neuro-Symbolic Routing mechanism, which predicts latent semantic token roles (e.g., header, data cell, axis, formula) and dynamically routes table elements to specialized experts (Table-to-HTML, Table-to-JSON, Table-to-Code) using a confidence-aware gating strategy informed by symbolic reasoning graphs. To facilitate effective alignment-driven pretraining, we introduce the large-scale TableMoE-Align dataset, consisting of 1.2M table-HTML-JSON-code quadruples across finance, science, biomedicine and industry, utilized exclusively for model pretraining. For evaluation, we curate and release four challenging WildStruct benchmarks: WMMFinQA, WMMTatQA, WMMTabDialog, and WMMFinanceMath, designed specifically to stress-test models under real-world multimodal degradation and structural complexity. Experimental results demonstrate that TableMoE significantly surpasses existing state-of-the-art models. Extensive ablation studies validate each core component, emphasizing the critical role of Neuro-Symbolic Routing and structured expert alignment. Through qualitative analyses, we further showcase TableMoE's interpretability and enhanced robustness, underscoring the effectiveness of integrating neuro-symbolic reasoning for multimodal table understanding.




Abstract:Existing micro aerial vehicle (MAV) detection methods mainly rely on the target's appearance features in RGB images, whose diversity makes it difficult to achieve generalized MAV detection. We notice that different types of MAVs share the same distinctive features in event streams due to their high-speed rotating propellers, which are hard to see in RGB images. This paper studies how to detect different types of MAVs from an event camera by fully exploiting the features of propellers in the original event stream. The proposed method consists of three modules to extract the salient and spatio-temporal features of the propellers while filtering out noise from background objects and camera motion. Since there are no existing event-based MAV datasets, we introduce a novel MAV dataset for the community. This is the first event-based MAV dataset comprising multiple scenarios and different types of MAVs. Without training, our method significantly outperforms state-of-the-art methods and can deal with challenging scenarios, achieving a precision rate of 83.0\% (+30.3\%) and a recall rate of 81.5\% (+36.4\%) on the proposed testing dataset. The dataset and code are available at: https://github.com/WindyLab/EvDetMAV.
Abstract:Underwater target tracking technology plays a pivotal role in marine resource exploration, environmental monitoring, and national defense security. Given that acoustic waves represent an effective medium for long-distance transmission in aquatic environments, underwater acoustic target tracking has become a prominent research area of underwater communications and networking. Existing literature reviews often offer a narrow perspective or inadequately address the paradigm shifts driven by emerging technologies like deep learning and reinforcement learning. To address these gaps, this work presents a systematic survey of this field and introduces an innovative multidimensional taxonomy framework based on target scale, sensor perception modes, and sensor collaboration patterns. Within this framework, we comprehensively survey the literature (more than 180 publications) over the period 2016-2025, spanning from the theoretical foundations to diverse algorithmic approaches in underwater acoustic target tracking. Particularly, we emphasize the transformative potential and recent advancements of machine learning techniques, including deep learning and reinforcement learning, in enhancing the performance and adaptability of underwater tracking systems. Finally, this survey concludes by identifying key challenges in the field and proposing future avenues based on emerging technologies such as federated learning, blockchain, embodied intelligence, and large models.
Abstract:Text-to-image (T2I) diffusion models, renowned for their advanced generative abilities, are extensively utilized in image editing applications, demonstrating remarkable effectiveness. However, achieving precise control over fine-grained attributes still presents considerable challenges. Existing image editing techniques either fail to modify the attributes of an object or struggle to preserve its structure and maintain consistency in other areas of the image. To address these challenges, we propose the Structure-Preserving and Attribute Amplification (SPAA), a training-free method which enables precise control over the color and material transformations of objects by editing the self-attention maps and cross-attention values. Furthermore, we constructed the Attribute Dataset, which encompasses nearly all colors and materials associated with various objects, by integrating multimodal large language models (MLLM) to develop an automated pipeline for data filtering and instruction labeling. Training on this dataset, we present our InstructAttribute, an instruction-based model designed to facilitate fine-grained editing of color and material attributes. Extensive experiments demonstrate that our method achieves superior performance in object-level color and material editing, outperforming existing instruction-based image editing approaches.




Abstract:Recently, photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), have garnered widespread attention due to their superior performance. However, most works rely on low dynamic range (LDR) images, which limits the capturing of richer scene details. Some prior works have focused on high dynamic range (HDR) scene reconstruction, typically require capturing of multi-view sharp images with different exposure times at fixed camera positions during exposure times, which is time-consuming and challenging in practice. For a more flexible data acquisition, we propose a one-stage method: \textbf{CasualHDRSplat} to easily and robustly reconstruct the 3D HDR scene from casually captured videos with auto-exposure enabled, even in the presence of severe motion blur and varying unknown exposure time. \textbf{CasualHDRSplat} contains a unified differentiable physical imaging model which first applies continuous-time trajectory constraint to imaging process so that we can jointly optimize exposure time, camera response function (CRF), camera poses, and sharp 3D HDR scene. Extensive experiments demonstrate that our approach outperforms existing methods in terms of robustness and rendering quality. Our source code will be available at https://github.com/WU-CVGL/CasualHDRSplat




Abstract:Many text classification methods usually introduce external information (e.g., label descriptions and knowledge bases) to improve the classification performance. Compared to external information, some internal information generated by the model itself during training, like text embeddings and predicted label probability distributions, are exploited poorly when predicting the outcomes of some texts. In this paper, we focus on leveraging this internal information, proposing a dual $k$ nearest neighbor (D$k$NN) framework with two $k$NN modules, to retrieve several neighbors from the training set and augment the distribution of labels. For the $k$NN module, it is easily confused and may cause incorrect predictions when retrieving some nearest neighbors from noisy datasets (datasets with labeling errors) or similar datasets (datasets with similar labels). To address this issue, we also introduce a label distribution learning module that can learn label similarity, and generate a better label distribution to help models distinguish texts more effectively. This module eases model overfitting and improves final classification performance, hence enhancing the quality of the retrieved neighbors by $k$NN modules during inference. Extensive experiments on the benchmark datasets verify the effectiveness of our method.
Abstract:Most recommendation systems typically follow a product-based paradigm utilizing user-product interactions to identify the most engaging items for users. However, this product-based paradigm has notable drawbacks for Xianyu~\footnote{Xianyu is China's largest online C2C e-commerce platform where a large portion of the product are post by individual sellers}. Most of the product on Xianyu posted from individual sellers often have limited stock available for distribution, and once the product is sold, it's no longer available for distribution. This result in most items distributed product on Xianyu having relatively few interactions, affecting the effectiveness of traditional recommendation depending on accumulating user-item interactions. To address these issues, we introduce \textbf{IU4Rec}, an \textbf{I}nterest \textbf{U}nit-based two-stage \textbf{Rec}ommendation system framework. We first group products into clusters based on attributes such as category, image, and semantics. These IUs are then integrated into the Recommendation system, delivering both product and technological innovations. IU4Rec begins by grouping products into clusters based on attributes such as category, image, and semantics, forming Interest Units (IUs). Then we redesign the recommendation process into two stages. In the first stage, the focus is on recommend these Interest Units, capturing broad-level interests. In the second stage, it guides users to find the best option among similar products within the selected Interest Unit. User-IU interactions are incorporated into our ranking models, offering the advantage of more persistent IU behaviors compared to item-specific interactions. Experimental results on the production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed IU-centric recommendation approach.