Abstract:Most recommendation systems typically follow a product-based paradigm utilizing user-product interactions to identify the most engaging items for users. However, this product-based paradigm has notable drawbacks for Xianyu~\footnote{Xianyu is China's largest online C2C e-commerce platform where a large portion of the product are post by individual sellers}. Most of the product on Xianyu posted from individual sellers often have limited stock available for distribution, and once the product is sold, it's no longer available for distribution. This result in most items distributed product on Xianyu having relatively few interactions, affecting the effectiveness of traditional recommendation depending on accumulating user-item interactions. To address these issues, we introduce \textbf{IU4Rec}, an \textbf{I}nterest \textbf{U}nit-based two-stage \textbf{Rec}ommendation system framework. We first group products into clusters based on attributes such as category, image, and semantics. These IUs are then integrated into the Recommendation system, delivering both product and technological innovations. IU4Rec begins by grouping products into clusters based on attributes such as category, image, and semantics, forming Interest Units (IUs). Then we redesign the recommendation process into two stages. In the first stage, the focus is on recommend these Interest Units, capturing broad-level interests. In the second stage, it guides users to find the best option among similar products within the selected Interest Unit. User-IU interactions are incorporated into our ranking models, offering the advantage of more persistent IU behaviors compared to item-specific interactions. Experimental results on the production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed IU-centric recommendation approach.
Abstract:The availability of challenging simulation environments is pivotal for advancing the field of Multi-Agent Reinforcement Learning (MARL). In cooperative MARL settings, the StarCraft Multi-Agent Challenge (SMAC) has gained prominence as a benchmark for algorithms following centralized training with decentralized execution paradigm. However, with continual advancements in SMAC, many algorithms now exhibit near-optimal performance, complicating the evaluation of their true effectiveness. To alleviate this problem, in this work, we highlight a critical issue: the default opponent policy in these environments lacks sufficient diversity, leading MARL algorithms to overfit and exploit unintended vulnerabilities rather than learning robust strategies. To overcome these limitations, we propose SMAC-HARD, a novel benchmark designed to enhance training robustness and evaluation comprehensiveness. SMAC-HARD supports customizable opponent strategies, randomization of adversarial policies, and interfaces for MARL self-play, enabling agents to generalize to varying opponent behaviors and improve model stability. Furthermore, we introduce a black-box testing framework wherein agents are trained without exposure to the edited opponent scripts but are tested against these scripts to evaluate the policy coverage and adaptability of MARL algorithms. We conduct extensive evaluations of widely used and state-of-the-art algorithms on SMAC-HARD, revealing the substantial challenges posed by edited and mixed strategy opponents. Additionally, the black-box strategy tests illustrate the difficulty of transferring learned policies to unseen adversaries. We envision SMAC-HARD as a critical step toward benchmarking the next generation of MARL algorithms, fostering progress in self-play methods for multi-agent systems. Our code is available at https://github.com/devindeng94/smac-hard.
Abstract:Text-to-image (T2I) diffusion models, with their impressive generative capabilities, have been adopted for image editing tasks, demonstrating remarkable efficacy. However, due to attention leakage and collision between the cross-attention map of the object and the new color attribute from the text prompt, text-guided image editing methods may fail to change the color of an object, resulting in a misalignment between the resulting image and the text prompt. In this paper, we conduct an in-depth analysis on the process of text-guided image synthesizing and what semantic information different cross-attention blocks have learned. We observe that the visual representation of an object is determined in the up-block of the diffusion model in the early stage of the denoising process, and color adjustment can be achieved through value matrices alignment in the cross-attention layer. Based on our findings, we propose a straightforward, yet stable, and effective image-guided method to modify the color of an object without requiring any additional fine-tuning or training. Lastly, we present a benchmark dataset called COLORBENCH, the first benchmark to evaluate the performance of color change methods. Extensive experiments validate the effectiveness of our method in object-level color editing and surpass the performance of popular text-guided image editing approaches in both synthesized and real images.
Abstract:Recent advancements in Large Video-Language Models (LVLMs) have driven the development of benchmarks designed to assess cognitive abilities in video-based tasks. However, most existing benchmarks heavily rely on web-collected videos paired with human annotations or model-generated questions, which limit control over the video content and fall short in evaluating advanced cognitive abilities involving symbolic elements and abstract concepts. To address these limitations, we introduce VCBench, a controllable benchmark to assess LVLMs' cognitive abilities, involving symbolic and abstract concepts at varying difficulty levels. By generating video data with the Python-based engine, VCBench allows for precise control over the video content, creating dynamic, task-oriented videos that feature complex scenes and abstract concepts. Each task pairs with tailored question templates that target specific cognitive challenges, providing a rigorous evaluation test. Our evaluation reveals that even state-of-the-art (SOTA) models, such as Qwen2-VL-72B, struggle with simple video cognition tasks involving abstract concepts, with performance sharply dropping by 19% as video complexity rises. These findings reveal the current limitations of LVLMs in advanced cognitive tasks and highlight the critical role of VCBench in driving research toward more robust LVLMs for complex video cognition challenges.
Abstract:Emerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.
Abstract:StarCraft Multi-Agent Challenge (SMAC) is one of the most commonly used experimental environments in multi-agent reinforcement learning (MARL), where the specific task is to control a set number of allied units to defeat enemy forces. Traditional MARL algorithms often require interacting with the environment for up to 1 million steps to train a model, and the resulting policies are typically non-interpretable with weak transferability. In this paper, we propose a novel approach to solving SMAC tasks called LLM-SMAC. In our framework, agents leverage large language models (LLMs) to generate decision tree code by providing task descriptions. The model is further self-reflection using feedback from the rewards provided by the environment. We conduct experiments in the SMAC and demonstrate that our method can produce high-quality, interpretable decision trees with minimal environmental exploration. Moreover, these models exhibit strong transferability, successfully applying to similar SMAC environments without modification. We believe this approach offers a new direction for solving decision-making tasks in the future.
Abstract:Instruction tuning is a crucial technique for aligning language models with humans' actual goals in the real world. Extensive research has highlighted the quality of instruction data is essential for the success of this alignment. However, creating high-quality data manually is labor-intensive and time-consuming, which leads researchers to explore using LLMs to synthesize data. Recent studies have focused on using a stronger LLM to iteratively enhance existing instruction data, showing promising results. Nevertheless, previous work often lacks control over the evolution direction, resulting in high uncertainty in the data synthesis process and low-quality instructions. In this paper, we introduce a general and scalable framework, IDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search), a scalable framework for efficiently synthesizing instructions. With tree search and evaluation models, it can efficiently guide each instruction to evolve into a high-quality form, aiding in instruction fine-tuning. Experimental results show that IDEA-MCTS significantly enhances the seed instruction data, raising the average evaluation scores of quality, diversity, and complexity from 2.19 to 3.81. Furthermore, in open-domain benchmarks, experimental results show that IDEA-MCTS improves the accuracy of real-world instruction-following skills in LLMs by an average of 5\% in low-resource settings.
Abstract:Despite large language models (LLMs) have demonstrated impressive performance in various tasks, they are still suffering from the factual inconsistency problem called hallucinations. For instance, LLMs occasionally generate content that diverges from source article, and prefer to extract information that appears at the beginning and end of the context, especially in long document summarization. Inspired by these findings, we propose to improve the faithfulness of LLMs in summarization by impelling them to process the entire article more fairly and faithfully. We present a novel summary generation strategy, namely SliSum, which exploits the ideas of sliding windows and self-consistency. Specifically, SliSum divides the source article into overlapping windows, and utilizes LLM to generate local summaries for the content in the windows. Finally, SliSum aggregates all local summaries using clustering and majority voting algorithm to produce more faithful summary of entire article. Extensive experiments demonstrate that SliSum significantly improves the faithfulness of diverse LLMs including LLaMA-2, Claude-2 and GPT-3.5 in both short and long text summarization, while maintaining their fluency and informativeness and without additional fine-tuning and resources. We further conduct qualitative and quantitative studies to investigate why SliSum works and impacts of hyperparameters in SliSum on performance.
Abstract:Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
Abstract:Artificial intelligence (AI) technology has demonstrated remarkable potential in drug dis-covery, where pharmacokinetics plays a crucial role in determining the dosage, safety, and efficacy of new drugs. A major challenge for AI-driven drug discovery (AIDD) is the scarcity of high-quality data, which often requires extensive wet-lab work. A typical example of this is pharmacokinetic experiments. In this work, we develop a physical formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously. By incorporating physical formulas into the multi-task framework, PEMAL facilitates effective knowledge sharing and target alignment among the pharmacokinetic parameters, thereby enhancing the accuracy of prediction. Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks. Moreover, we demonstrate that PEMAL enhances the robustness to noise, an advantage that conventional Neural Networks do not possess. Another advantage of PEMAL is its high flexibility, which can be potentially applied to other multi-task machine learning scenarios. Overall, our work illustrates the benefits and potential of using PEMAL in AIDD and other scenarios with data scarcity and noise.