Abstract:Emerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.
Abstract:When capturing images through the glass during rainy or snowy weather conditions, the resulting images often contain waterdrops adhered on the glass surface, and these waterdrops significantly degrade the image quality and performance of many computer vision algorithms. To tackle these limitations, we propose a method to reconstruct the clear 3D scene implicitly from multi-view images degraded by waterdrops. Our method exploits an attention network to predict the location of waterdrops and then train a Neural Radiance Fields to recover the 3D scene implicitly. By leveraging the strong scene representation capabilities of NeRF, our method can render high-quality novel-view images with waterdrops removed. Extensive experimental results on both synthetic and real datasets show that our method is able to generate clear 3D scenes and outperforms existing state-of-the-art (SOTA) image adhesive waterdrop removal methods.
Abstract:While text-to-3D and image-to-3D generation tasks have received considerable attention, one important but under-explored field between them is controllable text-to-3D generation, which we mainly focus on in this work. To address this task, 1) we introduce Multi-view ControlNet (MVControl), a novel neural network architecture designed to enhance existing pre-trained multi-view diffusion models by integrating additional input conditions, such as edge, depth, normal, and scribble maps. Our innovation lies in the introduction of a conditioning module that controls the base diffusion model using both local and global embeddings, which are computed from the input condition images and camera poses. Once trained, MVControl is able to offer 3D diffusion guidance for optimization-based 3D generation. And, 2) we propose an efficient multi-stage 3D generation pipeline that leverages the benefits of recent large reconstruction models and score distillation algorithm. Building upon our MVControl architecture, we employ a unique hybrid diffusion guidance method to direct the optimization process. In pursuit of efficiency, we adopt 3D Gaussians as our representation instead of the commonly used implicit representations. We also pioneer the use of SuGaR, a hybrid representation that binds Gaussians to mesh triangle faces. This approach alleviates the issue of poor geometry in 3D Gaussians and enables the direct sculpting of fine-grained geometry on the mesh. Extensive experiments demonstrate that our method achieves robust generalization and enables the controllable generation of high-quality 3D content.
Abstract:While neural rendering has demonstrated impressive capabilities in 3D scene reconstruction and novel view synthesis, it heavily relies on high-quality sharp images and accurate camera poses. Numerous approaches have been proposed to train Neural Radiance Fields (NeRF) with motion-blurred images, commonly encountered in real-world scenarios such as low-light or long-exposure conditions. However, the implicit representation of NeRF struggles to accurately recover intricate details from severely motion-blurred images and cannot achieve real-time rendering. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction and real-time rendering by explicitly optimizing point clouds as Gaussian spheres. In this paper, we introduce a novel approach, named BAD-Gaussians (Bundle Adjusted Deblur Gaussian Splatting), which leverages explicit Gaussian representation and handles severe motion-blurred images with inaccurate camera poses to achieve high-quality scene reconstruction. Our method models the physical image formation process of motion-blurred images and jointly learns the parameters of Gaussians while recovering camera motion trajectories during exposure time. In our experiments, we demonstrate that BAD-Gaussians not only achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods on both synthetic and real datasets but also enables real-time rendering capabilities. Our project page and source code is available at https://lingzhezhao.github.io/BAD-Gaussians/
Abstract:We introduce MVControl, a novel neural network architecture that enhances existing pre-trained multi-view 2D diffusion models by incorporating additional input conditions, e.g. edge maps. Our approach enables the generation of controllable multi-view images and view-consistent 3D content. To achieve controllable multi-view image generation, we leverage MVDream as our base model, and train a new neural network module as additional plugin for end-to-end task-specific condition learning. To precisely control the shapes and views of generated images, we innovatively propose a new conditioning mechanism that predicts an embedding encapsulating the input spatial and view conditions, which is then injected to the network globally. Once MVControl is trained, score-distillation (SDS) loss based optimization can be performed to generate 3D content, in which process we propose to use a hybrid diffusion prior. The hybrid prior relies on a pre-trained Stable-Diffusion network and our trained MVControl for additional guidance. Extensive experiments demonstrate that our method achieves robust generalization and enables the controllable generation of high-quality 3D content. Code available at https://github.com/WU-CVGL/MVControl/.
Abstract:Neural Radiance Fields (NeRF) has received much attention recently due to its impressive capability to represent 3D scene and synthesize novel view images. Existing works usually assume that the input images are captured by a global shutter camera. Thus, rolling shutter (RS) images cannot be trivially applied to an off-the-shelf NeRF algorithm for novel view synthesis. Rolling shutter effect would also affect the accuracy of the camera pose estimation (e.g. via COLMAP), which further prevents the success of NeRF algorithm with RS images. In this paper, we propose Unrolling Shutter Bundle Adjusted Neural Radiance Fields (USB-NeRF). USB-NeRF is able to correct rolling shutter distortions and recover accurate camera motion trajectory simultaneously under the framework of NeRF, by modeling the physical image formation process of a RS camera. Experimental results demonstrate that USB-NeRF achieves better performance compared to prior works, in terms of RS effect removal, novel view image synthesis as well as camera motion estimation. Furthermore, our algorithm can also be used to recover high-fidelity high frame-rate global shutter video from a sequence of RS images.
Abstract:Neural Radiance Fields (NeRF) have received considerable attention recently, due to its impressive capability in photo-realistic 3D reconstruction and novel view synthesis, given a set of posed camera images. Earlier work usually assumes the input images are in good quality. However, image degradation (e.g. image motion blur in low-light conditions) can easily happen in real-world scenarios, which would further affect the rendering quality of NeRF. In this paper, we present a novel bundle adjusted deblur Neural Radiance Fields (BAD-NeRF), which can be robust to severe motion blurred images and inaccurate camera poses. Our approach models the physical image formation process of a motion blurred image, and jointly learns the parameters of NeRF and recovers the camera motion trajectories during exposure time. In experiments, we show that by directly modeling the real physical image formation process, BAD-NeRF achieves superior performance over prior works on both synthetic and real datasets.
Abstract:Current state-of-art feature-engineered and end-to-end Automated Essay Score (AES) methods are proven to be unable to detect adversarial samples, e.g. the essays composed of permuted sentences and the prompt-irrelevant essays. Focusing on the problem, we develop a Two-Stage Learning Framework (TSLF) which integrates the advantages of both feature-engineered and end-to-end AES models. In experiments, we compare TSLF against a number of strong baselines, and the results demonstrate the effectiveness and robustness of our models. TSLF surpasses all the baselines on five-eighths of prompts and achieves new state-of-the-art average performance when without negative samples. After adding some adversarial essays to the original datasets, TSLF outperforms the feature-engineered and end-to-end baselines to a great extent, and shows great robustness.