https://github.com/WU-CVGL/MVControl/.
We introduce MVControl, a novel neural network architecture that enhances existing pre-trained multi-view 2D diffusion models by incorporating additional input conditions, e.g. edge maps. Our approach enables the generation of controllable multi-view images and view-consistent 3D content. To achieve controllable multi-view image generation, we leverage MVDream as our base model, and train a new neural network module as additional plugin for end-to-end task-specific condition learning. To precisely control the shapes and views of generated images, we innovatively propose a new conditioning mechanism that predicts an embedding encapsulating the input spatial and view conditions, which is then injected to the network globally. Once MVControl is trained, score-distillation (SDS) loss based optimization can be performed to generate 3D content, in which process we propose to use a hybrid diffusion prior. The hybrid prior relies on a pre-trained Stable-Diffusion network and our trained MVControl for additional guidance. Extensive experiments demonstrate that our method achieves robust generalization and enables the controllable generation of high-quality 3D content. Code available at