Abstract:Addressing the challenge of data scarcity in industrial domains, transfer learning emerges as a pivotal paradigm. This work introduces Style Filter, a tailored methodology for industrial contexts. By selectively filtering source domain data before knowledge transfer, Style Filter reduces the quantity of data while maintaining or even enhancing the performance of transfer learning strategy. Offering label-free operation, minimal reliance on prior knowledge, independence from specific models, and re-utilization, Style Filter is evaluated on authentic industrial datasets, highlighting its effectiveness when employed before conventional transfer strategies in the deep learning domain. The results underscore the effectiveness of Style Filter in real-world industrial applications.
Abstract:Neural Radiance Fields (NeRF) have received considerable attention recently, due to its impressive capability in photo-realistic 3D reconstruction and novel view synthesis, given a set of posed camera images. Earlier work usually assumes the input images are in good quality. However, image degradation (e.g. image motion blur in low-light conditions) can easily happen in real-world scenarios, which would further affect the rendering quality of NeRF. In this paper, we present a novel bundle adjusted deblur Neural Radiance Fields (BAD-NeRF), which can be robust to severe motion blurred images and inaccurate camera poses. Our approach models the physical image formation process of a motion blurred image, and jointly learns the parameters of NeRF and recovers the camera motion trajectories during exposure time. In experiments, we show that by directly modeling the real physical image formation process, BAD-NeRF achieves superior performance over prior works on both synthetic and real datasets.