Abstract:While Vision-Language-Action (VLA) models have achieved remarkable success in ground-based embodied intelligence, their application to Aerial Manipulation Systems (AMS) remains a largely unexplored frontier. The inherent characteristics of AMS, including floating-base dynamics, strong coupling between the UAV and the manipulator, and the multi-step, long-horizon nature of operational tasks, pose severe challenges to existing VLA paradigms designed for static or 2D mobile bases. To bridge this gap, we propose AIR-VLA, the first VLA benchmark specifically tailored for aerial manipulation. We construct a physics-based simulation environment and release a high-quality multimodal dataset comprising 3000 manually teleoperated demonstrations, covering base manipulation, object & spatial understanding, semantic reasoning, and long-horizon planning. Leveraging this platform, we systematically evaluate mainstream VLA models and state-of-the-art VLM models. Our experiments not only validate the feasibility of transferring VLA paradigms to aerial systems but also, through multi-dimensional metrics tailored to aerial tasks, reveal the capabilities and boundaries of current models regarding UAV mobility, manipulator control, and high-level planning. AIR-VLA establishes a standardized testbed and data foundation for future research in general-purpose aerial robotics. The resource of AIR-VLA will be available at https://anonymous.4open.science/r/AIR-VLA-dataset-B5CC/.
Abstract:Accurate and early perception of potential intrusion targets is essential for ensuring the safety of railway transportation systems. However, most existing systems focus narrowly on object classification within fixed visual scopes and apply rule-based heuristics to determine intrusion status, often overlooking targets that pose latent intrusion risks. Anticipating such risks requires the cognition of spatial context and temporal dynamics for the object of interest (OOI), which presents challenges for conventional visual models. To facilitate deep intrusion perception, we introduce a novel benchmark, CogRail, which integrates curated open-source datasets with cognitively driven question-answer annotations to support spatio-temporal reasoning and prediction. Building upon this benchmark, we conduct a systematic evaluation of state-of-the-art visual-language models (VLMs) using multimodal prompts to identify their strengths and limitations in this domain. Furthermore, we fine-tune VLMs for better performance and propose a joint fine-tuning framework that integrates three core tasks, position perception, movement prediction, and threat analysis, facilitating effective adaptation of general-purpose foundation models into specialized models tailored for cognitive intrusion perception. Extensive experiments reveal that current large-scale multimodal models struggle with the complex spatial-temporal reasoning required by the cognitive intrusion perception task, underscoring the limitations of existing foundation models in this safety-critical domain. In contrast, our proposed joint fine-tuning framework significantly enhances model performance by enabling targeted adaptation to domain-specific reasoning demands, highlighting the advantages of structured multi-task learning in improving both accuracy and interpretability. Code will be available at https://github.com/Hub-Tian/CogRail.
Abstract:Competitive access to modern observatories has intensified as proposal volumes outpace available telescope time, making timely, consistent, and transparent peer review a critical bottleneck for the advancement of astronomy. Automating parts of this process is therefore both scientifically significant and operationally necessary to ensure fair allocation and reproducible decisions at scale. We present AstroReview, an open-source, agent-based framework that automates proposal review in three stages: (i) novelty and scientific merit, (ii) feasibility and expected yield, and (iii) meta-review and reliability verification. Task isolation and explicit reasoning traces curb hallucinations and improve transparency. Without any domain specific fine tuning, AstroReview used in our experiments only for the last stage, correctly identifies genuinely accepted proposals with an accuracy of 87%. The AstroReview in Action module replicates the review and refinement loop; with its integrated Proposal Authoring Agent, the acceptance rate of revised drafts increases by 66% after two iterations, showing that iterative feedback combined with automated meta-review and reliability verification delivers measurable quality gains. Together, these results point to a practical path toward scalable, auditable, and higher throughput proposal review for resource limited facilities.
Abstract:Underwater target tracking technology plays a pivotal role in marine resource exploration, environmental monitoring, and national defense security. Given that acoustic waves represent an effective medium for long-distance transmission in aquatic environments, underwater acoustic target tracking has become a prominent research area of underwater communications and networking. Existing literature reviews often offer a narrow perspective or inadequately address the paradigm shifts driven by emerging technologies like deep learning and reinforcement learning. To address these gaps, this work presents a systematic survey of this field and introduces an innovative multidimensional taxonomy framework based on target scale, sensor perception modes, and sensor collaboration patterns. Within this framework, we comprehensively survey the literature (more than 180 publications) over the period 2016-2025, spanning from the theoretical foundations to diverse algorithmic approaches in underwater acoustic target tracking. Particularly, we emphasize the transformative potential and recent advancements of machine learning techniques, including deep learning and reinforcement learning, in enhancing the performance and adaptability of underwater tracking systems. Finally, this survey concludes by identifying key challenges in the field and proposing future avenues based on emerging technologies such as federated learning, blockchain, embodied intelligence, and large models.
Abstract:Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing.




Abstract:The growing demand for intelligent logistics, particularly fine-grained terminal delivery, underscores the need for autonomous UAV (Unmanned Aerial Vehicle)-based delivery systems. However, most existing last-mile delivery studies rely on ground robots, while current UAV-based Vision-Language Navigation (VLN) tasks primarily focus on coarse-grained, long-range goals, making them unsuitable for precise terminal delivery. To bridge this gap, we propose LogisticsVLN, a scalable aerial delivery system built on multimodal large language models (MLLMs) for autonomous terminal delivery. LogisticsVLN integrates lightweight Large Language Models (LLMs) and Visual-Language Models (VLMs) in a modular pipeline for request understanding, floor localization, object detection, and action-decision making. To support research and evaluation in this new setting, we construct the Vision-Language Delivery (VLD) dataset within the CARLA simulator. Experimental results on the VLD dataset showcase the feasibility of the LogisticsVLN system. In addition, we conduct subtask-level evaluations of each module of our system, offering valuable insights for improving the robustness and real-world deployment of foundation model-based vision-language delivery systems.




Abstract:With the increasing demand for heterogeneous Unmanned Aerial Vehicle (UAV) swarms to perform complex tasks in urban environments, system design now faces major challenges, including efficient semantic understanding, flexible task planning, and the ability to dynamically adjust coordination strategies in response to evolving environmental conditions and continuously changing task requirements. To address the limitations of existing approaches, this paper proposes coordination field agentic system for coordinating heterogeneous UAV swarms in complex urban scenarios. In this system, large language models (LLMs) is responsible for interpreting high-level human instructions and converting them into executable commands for the UAV swarms, such as patrol and target tracking. Subsequently, a Coordination field mechanism is proposed to guide UAV motion and task selection, enabling decentralized and adaptive allocation of emergent tasks. A total of 50 rounds of comparative testing were conducted across different models in a 2D simulation space to evaluate their performance. Experimental results demonstrate that the proposed system achieves superior performance in terms of task coverage, response time, and adaptability to dynamic changes.
Abstract:Unmanned Aerial Vehicles (UAVs) are increasingly important in dynamic environments such as logistics transportation and disaster response. However, current tasks often rely on human operators to monitor aerial videos and make operational decisions. This mode of human-machine collaboration suffers from significant limitations in efficiency and adaptability. In this paper, we present AirVista-II -- an end-to-end agentic system for embodied UAVs, designed to enable general-purpose semantic understanding and reasoning in dynamic scenes. The system integrates agent-based task identification and scheduling, multimodal perception mechanisms, and differentiated keyframe extraction strategies tailored for various temporal scenarios, enabling the efficient capture of critical scene information. Experimental results demonstrate that the proposed system achieves high-quality semantic understanding across diverse UAV-based dynamic scenarios under a zero-shot setting.




Abstract:Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
Abstract:Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.