Abstract:Traditional rule-based physical models are limited by their reliance on singular physical formulas and parameters, making it difficult to effectively tackle the intricate tasks associated with crowd simulation. Recent research has introduced deep learning methods to tackle these issues, but most current approaches focus primarily on generating pedestrian trajectories, often lacking interpretability and failing to provide real-time dynamic simulations.To address the aforementioned issues, we propose a novel data-driven crowd simulation framework that integrates Physics-informed Machine Learning (PIML) with navigation potential fields. Our approach leverages the strengths of both physical models and PIML. Specifically, we design an innovative Physics-informed Spatio-temporal Graph Convolutional Network (PI-STGCN) as a data-driven module to predict pedestrian movement trends based on crowd spatio-temporal data. Additionally, we construct a physical model of navigation potential fields based on flow field theory to guide pedestrian movements, thereby reinforcing physical constraints during the simulation. In our framework, navigation potential fields are dynamically computed and updated based on the movement trends predicted by the PI-STGCN, while the updated crowd dynamics, guided by these fields, subsequently feed back into the PI-STGCN. Comparative experiments on two publicly available large-scale real-world datasets across five scenes demonstrate that our proposed framework outperforms existing rule-based methods in accuracy and fidelity. The similarity between simulated and actual pedestrian trajectories increases by 10.8%, while the average error is reduced by 4%. Moreover, our framework exhibits greater adaptability and better interpretability compared to methods that rely solely on deep learning for trajectory generation.
Abstract:Spatial Crowdsourcing (SC) is gaining traction in both academia and industry, with tasks on SC platforms becoming increasingly complex and requiring collaboration among workers with diverse skills. Recent research works address complex tasks by dividing them into subtasks with dependencies and assigning them to suitable workers. However, the dependencies among subtasks and their heterogeneous skill requirements, as well as the need for efficient utilization of workers' limited work time in the multi-task allocation mode, pose challenges in achieving an optimal task allocation scheme. Therefore, this paper formally investigates the problem of Dependency-aware Multi-task Allocation (DMA) and presents a well-designed framework to solve it, known as Heterogeneous Graph Reinforcement Learning-based Task Allocation (HGRL-TA). To address the challenges associated with representing and embedding diverse problem instances to ensure robust generalization, we propose a multi-relation graph model and a Compound-path-based Heterogeneous Graph Attention Network (CHANet) for effectively representing and capturing intricate relations among tasks and workers, as well as providing embedding of problem state. The task allocation decision is determined sequentially by a policy network, which undergoes simultaneous training with CHANet using the proximal policy optimization algorithm. Extensive experiment results demonstrate the effectiveness and generality of the proposed HGRL-TA in solving the DMA problem, leading to average profits that is 21.78% higher than those achieved using the metaheuristic methods.
Abstract:The transition from CPS-based Industry 4.0 to CPSS-based Industry 5.0 brings new requirements and opportunities to current sensing approaches, especially in light of recent progress in Chatbots and Large Language Models (LLMs). Therefore, the advancement of parallel intelligence-powered Crowdsensing Intelligence (CSI) is witnessed, which is currently advancing towards linguistic intelligence. In this paper, we propose a novel sensing paradigm, namely conversational crowdsensing, for Industry 5.0. It can alleviate workload and professional requirements of individuals and promote the organization and operation of diverse workforce, thereby facilitating faster response and wider popularization of crowdsensing systems. Specifically, we design the architecture of conversational crowdsensing to effectively organize three types of participants (biological, robotic, and digital) from diverse communities. Through three levels of effective conversation (i.e., inter-human, human-AI, and inter-AI), complex interactions and service functionalities of different workers can be achieved to accomplish various tasks across three sensing phases (i.e., requesting, scheduling, and executing). Moreover, we explore the foundational technologies for realizing conversational crowdsensing, encompassing LLM-based multi-agent systems, scenarios engineering and conversational human-AI cooperation. Finally, we present potential industrial applications of conversational crowdsensing and discuss its implications. We envision that conversations in natural language will become the primary communication channel during crowdsensing process, enabling richer information exchange and cooperative problem-solving among humans, robots, and AI.