Abstract:The rapid advancement of Large Vision-Language models (LVLMs) has demonstrated a spectrum of emergent capabilities. Nevertheless, current models only focus on the visual content of a single scenario, while their ability to associate instances across different scenes has not yet been explored, which is essential for understanding complex visual content, such as movies with multiple characters and intricate plots. Towards movie understanding, a critical initial step for LVLMs is to unleash the potential of character identities memory and recognition across multiple visual scenarios. To achieve the goal, we propose visual instruction tuning with ID reference and develop an ID-Aware Large Vision-Language Model, IDA-VLM. Furthermore, our research introduces a novel benchmark MM-ID, to examine LVLMs on instance IDs memory and recognition across four dimensions: matching, location, question-answering, and captioning. Our findings highlight the limitations of existing LVLMs in recognizing and associating instance identities with ID reference. This paper paves the way for future artificial intelligence systems to possess multi-identity visual inputs, thereby facilitating the comprehension of complex visual narratives like movies.
Abstract:Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
Abstract:The widespread use of high-definition screens in edge devices, such as end-user cameras, smartphones, and televisions, is spurring a significant demand for image enhancement. Existing enhancement models often optimize for high performance while falling short of reducing hardware inference time and power consumption, especially on edge devices with constrained computing and storage resources. To this end, we propose Image Color Enhancement Lookup Table (ICELUT) that adopts LUTs for extremely efficient edge inference, without any convolutional neural network (CNN). During training, we leverage pointwise (1x1) convolution to extract color information, alongside a split fully connected layer to incorporate global information. Both components are then seamlessly converted into LUTs for hardware-agnostic deployment. ICELUT achieves near-state-of-the-art performance and remarkably low power consumption. We observe that the pointwise network structure exhibits robust scalability, upkeeping the performance even with a heavily downsampled 32x32 input image. These enable ICELUT, the first-ever purely LUT-based image enhancer, to reach an unprecedented speed of 0.4ms on GPU and 7ms on CPU, at least one order faster than any CNN solution. Codes are available at https://github.com/Stephen0808/ICELUT.
Abstract:Video Moment Retrieval (MR) and Highlight Detection (HD) have attracted significant attention due to the growing demand for video analysis. Recent approaches treat MR and HD as similar video grounding problems and address them together with transformer-based architecture. However, we observe that the emphasis of MR and HD differs, with one necessitating the perception of local relationships and the other prioritizing the understanding of global contexts. Consequently, the lack of task-specific design will inevitably lead to limitations in associating the intrinsic specialty of two tasks. To tackle the issue, we propose a Unified Video COMprehension framework (UVCOM) to bridge the gap and jointly solve MR and HD effectively. By performing progressive integration on intra and inter-modality across multi-granularity, UVCOM achieves the comprehensive understanding in processing a video. Moreover, we present multi-aspect contrastive learning to consolidate the local relation modeling and global knowledge accumulation via well aligned multi-modal space. Extensive experiments on QVHighlights, Charades-STA, TACoS , YouTube Highlights and TVSum datasets demonstrate the effectiveness and rationality of UVCOM which outperforms the state-of-the-art methods by a remarkable margin.
Abstract:Cross-modal alignment plays a crucial role in vision-language pre-training (VLP) models, enabling them to capture meaningful associations across different modalities. For this purpose, inspired by the success of masked language modeling (MLM) tasks in the NLP pre-training area, numerous masked modeling tasks have been proposed for VLP to further promote cross-modal interactions. The core idea of previous masked modeling tasks is to focus on reconstructing the masked tokens based on visible context for learning local-local alignment, i.e., associations between image patches and text tokens. However, most of them pay little attention to the global semantic features generated for the masked data, resulting in a limited cross-modal alignment ability of global representations to local features of the other modality. Therefore, in this paper, we propose a novel Global and Local Semantic Completion Learning (GLSCL) task to facilitate global-local alignment and local-local alignment simultaneously. Specifically, the GLSCL task complements the missing semantics of masked data and recovers global and local features by cross-modal interactions. Our GLSCL consists of masked global semantic completion (MGSC) and masked local token completion (MLTC). MGSC promotes learning more representative global features which have a great impact on the performance of downstream tasks, and MLTC can further enhance accurate comprehension on multimodal data. Moreover, we present a flexible vision encoder, enabling our model to simultaneously perform image-text and video-text multimodal tasks. Experimental results show that our proposed method obtains state-of-the-art performance on various vision-language benchmarks, such as visual question answering, image-text retrieval, and video-text retrieval.
Abstract:Current methods for few-shot action recognition mainly fall into the metric learning framework following ProtoNet. However, they either ignore the effect of representative prototypes or fail to enhance the prototypes with multimodal information adequately. In this work, we propose a novel Multimodal Prototype-Enhanced Network (MORN) to use the semantic information of label texts as multimodal information to enhance prototypes, including two modality flows. A CLIP visual encoder is introduced in the visual flow, and visual prototypes are computed by the Temporal-Relational CrossTransformer (TRX) module. A frozen CLIP text encoder is introduced in the text flow, and a semantic-enhanced module is used to enhance text features. After inflating, text prototypes are obtained. The final multimodal prototypes are then computed by a multimodal prototype-enhanced module. Besides, there exist no evaluation metrics to evaluate the quality of prototypes. To the best of our knowledge, we are the first to propose a prototype evaluation metric called Prototype Similarity Difference (PRIDE), which is used to evaluate the performance of prototypes in discriminating different categories. We conduct extensive experiments on four popular datasets. MORN achieves state-of-the-art results on HMDB51, UCF101, Kinetics and SSv2. MORN also performs well on PRIDE, and we explore the correlation between PRIDE and accuracy.
Abstract:Cross-modal alignment is essential for vision-language pre-training (VLP) models to learn the correct corresponding information across different modalities. For this purpose, inspired by the success of masked language modeling (MLM) tasks in the NLP pre-training area, numerous masked modeling tasks have been proposed for VLP to further promote cross-modal interactions. The core idea of previous masked modeling tasks is to focus on reconstructing the masked tokens based on visible context for learning local-to-local alignment. However, most of them pay little attention to the global semantic features generated for the masked data, resulting in the limited cross-modal alignment ability of global representations. Therefore, in this paper, we propose a novel Semantic Completion Learning (SCL) task, complementary to existing masked modeling tasks, to facilitate global-to-local alignment. Specifically, the SCL task complements the missing semantics of masked data by capturing the corresponding information from the other modality, promoting learning more representative global features which have a great impact on the performance of downstream tasks. Moreover, we present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously. Experimental results show that our proposed method obtains state-of-the-art performance on various vision-language benchmarks, such as visual question answering, image-text retrieval, and video-text retrieval.
Abstract:Multimodal semantic understanding often has to deal with uncertainty, which means the obtained message tends to refer to multiple targets. Such uncertainty is problematic for our interpretation, including intra-modal and inter-modal uncertainty. Little effort studies the modeling of this uncertainty, particularly in pre-training on unlabeled datasets and fine-tuning in task-specific downstream tasks. To address this, we project the representations of all modalities as probabilistic distributions via a Probability Distribution Encoder (PDE) by utilizing rich multimodal semantic information. Furthermore, we integrate uncertainty modeling with popular pre-training frameworks and propose suitable pre-training tasks: Distribution-based Vision-Language Contrastive learning (D-VLC), Distribution-based Masked Language Modeling (D-MLM), and Distribution-based Image-Text Matching (D-ITM). The fine-tuned models are applied to challenging downstream tasks, including image-text retrieval, visual question answering, visual reasoning, and visual entailment, and achieve state-of-the-art results. Code is released at https://github.com/IIGROUP/MAP.