Abstract:Poisoning-based backdoor attacks expose vulnerabilities in the data preparation stage of deep neural network (DNN) training. The DNNs trained on the poisoned dataset will be embedded with a backdoor, making them behave well on clean data while outputting malicious predictions whenever a trigger is applied. To exploit the abundant information contained in the input data to output label mapping, our scheme utilizes the network trained from the clean dataset as a trigger generator to produce poisons that significantly raise the success rate of backdoor attacks versus conventional approaches. Specifically, we provide a new categorization of triggers inspired by the adversarial technique and develop a multi-label and multi-payload Poisoning-based backdoor attack with Positive Triggers (PPT), which effectively moves the input closer to the target label on benign classifiers. After the classifier is trained on the poisoned dataset, we can generate an input-label-aware trigger to make the infected classifier predict any given input to any target label with a high possibility. Under both dirty- and clean-label settings, we show empirically that the proposed attack achieves a high attack success rate without sacrificing accuracy across various datasets, including SVHN, CIFAR10, GTSRB, and Tiny ImageNet. Furthermore, the PPT attack can elude a variety of classical backdoor defenses, proving its effectiveness.
Abstract:The widespread use of high-definition screens in edge devices, such as end-user cameras, smartphones, and televisions, is spurring a significant demand for image enhancement. Existing enhancement models often optimize for high performance while falling short of reducing hardware inference time and power consumption, especially on edge devices with constrained computing and storage resources. To this end, we propose Image Color Enhancement Lookup Table (ICELUT) that adopts LUTs for extremely efficient edge inference, without any convolutional neural network (CNN). During training, we leverage pointwise (1x1) convolution to extract color information, alongside a split fully connected layer to incorporate global information. Both components are then seamlessly converted into LUTs for hardware-agnostic deployment. ICELUT achieves near-state-of-the-art performance and remarkably low power consumption. We observe that the pointwise network structure exhibits robust scalability, upkeeping the performance even with a heavily downsampled 32x32 input image. These enable ICELUT, the first-ever purely LUT-based image enhancer, to reach an unprecedented speed of 0.4ms on GPU and 7ms on CPU, at least one order faster than any CNN solution. Codes are available at https://github.com/Stephen0808/ICELUT.
Abstract:Existing approaches to Implicit Neural Representation (INR) can be interpreted as a global scene representation via a linear combination of Fourier bases of different frequencies. However, such universal basis functions can limit the representation capability in local regions where a specific component is unnecessary, resulting in unpleasant artifacts. To this end, we introduce a learnable spatial mask that effectively dispatches distinct Fourier bases into respective regions. This translates into collaging Fourier patches, thus enabling an accurate representation of complex signals. Comprehensive experiments demonstrate the superior reconstruction quality of the proposed approach over existing baselines across various INR tasks, including image fitting, video representation, and 3D shape representation. Our method outperforms all other baselines, improving the image fitting PSNR by over 3dB and 3D reconstruction to 98.81 IoU and 0.0011 Chamfer Distance.
Abstract:Conventional super-resolution (SR) schemes make heavy use of convolutional neural networks (CNNs), which involve intensive multiply-accumulate (MAC) operations, and require specialized hardware such as graphics processing units. This contradicts the regime of edge AI that often runs on devices strained by power, computing, and storage resources. Such a challenge has motivated a series of lookup table (LUT)-based SR schemes that employ simple LUT readout and largely elude CNN computation. Nonetheless, the multi-megabyte LUTs in existing methods still prohibit on-chip storage and necessitate off-chip memory transport. This work tackles this storage hurdle and innovates hundred-kilobyte LUT (HKLUT) models amenable to on-chip cache. Utilizing an asymmetric two-branch multistage network coupled with a suite of specialized kernel patterns, HKLUT demonstrates an uncompromising performance and superior hardware efficiency over existing LUT schemes.
Abstract:Most deep neural networks (DNNs) consist fundamentally of convolutional and/or fully connected layers, wherein the linear transform can be cast as the product between a filter matrix and a data matrix obtained by arranging feature tensors into columns. The lately proposed deformable butterfly (DeBut) decomposes the filter matrix into generalized, butterflylike factors, thus achieving network compression orthogonal to the traditional ways of pruning or low-rank decomposition. This work reveals an intimate link between DeBut and a systematic hierarchy of depthwise and pointwise convolutions, which explains the empirically good performance of DeBut layers. By developing an automated DeBut chain generator, we show for the first time the viability of homogenizing a DNN into all DeBut layers, thus achieving an extreme sparsity and compression. Various examples and hardware benchmarks verify the advantages of All-DeBut networks. In particular, we show it is possible to compress a PointNet to < 5% parameters with < 5% accuracy drop, a record not achievable by other compression schemes.
Abstract:Deep neural networks (DNNs) are incredibly vulnerable to crafted, imperceptible adversarial perturbations. While adversarial training (AT) has proven to be an effective defense approach, the AT mechanism for robustness improvement is not fully understood. This work investigates AT from a spectral perspective, adding new insights to the design of effective defenses. In particular, we show that AT induces the deep model to focus more on the low-frequency region, which retains the shape-biased representations, to gain robustness. Further, we find that the spectrum of a white-box attack is primarily distributed in regions the model focuses on, and the perturbation attacks the spectral bands where the model is vulnerable. Based on this observation, to train a model tolerant to frequency-varying perturbation, we propose a spectral alignment regularization (SAR) such that the spectral output inferred by an attacked adversarial input stays as close as possible to its natural input counterpart. Experiments demonstrate that SAR and its weight averaging (WA) extension could significantly improve the robust accuracy by 1.14% ~ 3.87% relative to the standard AT, across multiple datasets (CIFAR-10, CIFAR-100 and Tiny ImageNet), and various attacks (PGD, C&W and Autoattack), without any extra data.
Abstract:Deep neural networks are incredibly vulnerable to crafted, human-imperceptible adversarial perturbations. Although adversarial training (AT) has proven to be an effective defense approach, we find that the AT-trained models heavily rely on the input low-frequency content for judgment, accounting for the low standard accuracy. To close the large gap between the standard and robust accuracies during AT, we investigate the frequency difference between clean and adversarial inputs, and propose a frequency regularization (FR) to align the output difference in the spectral domain. Besides, we find Stochastic Weight Averaging (SWA), by smoothing the kernels over epochs, further improves the robustness. Among various defense schemes, our method achieves the strongest robustness against attacks by PGD-20, C\&W and Autoattack, on a WideResNet trained on CIFAR-10 without any extra data.
Abstract:Despite a growing number of datasets being collected for training 3D object detection models, significant human effort is still required to annotate 3D boxes on LiDAR scans. To automate the annotation and facilitate the production of various customized datasets, we propose an end-to-end multimodal transformer (MTrans) autolabeler, which leverages both LiDAR scans and images to generate precise 3D box annotations from weak 2D bounding boxes. To alleviate the pervasive sparsity problem that hinders existing autolabelers, MTrans densifies the sparse point clouds by generating new 3D points based on 2D image information. With a multi-task design, MTrans segments the foreground/background, densifies LiDAR point clouds, and regresses 3D boxes simultaneously. Experimental results verify the effectiveness of the MTrans for improving the quality of the generated labels. By enriching the sparse point clouds, our method achieves 4.48\% and 4.03\% better 3D AP on KITTI moderate and hard samples, respectively, versus the state-of-the-art autolabeler. MTrans can also be extended to improve the accuracy for 3D object detection, resulting in a remarkable 89.45\% AP on KITTI hard samples. Codes are at \url{https://github.com/Cliu2/MTrans}.
Abstract:Although many fields have witnessed the superior performance brought about by deep learning, the robustness of neural networks remains an open issue. Specifically, a small adversarial perturbation on the input may cause the model to produce a completely different output. Such poor robustness implies many potential hazards, especially in security-critical applications, e.g., autonomous driving and mobile robotics. This work studies what information the adversarially trained model focuses on. Empirically, we notice that the differences between the clean and adversarial data are mainly distributed in the low-frequency region. We then find that an adversarially-trained model is more robust than its naturally-trained counterpart due to the reason that the former pays more attention to learning the dominant information in low-frequency components. In addition, we consider two common ways to improve model robustness, namely, by data augmentation and by using stronger network architectures, and understand these techniques from a frequency-domain perspective. We are hopeful this work can shed light on the design of more robust neural networks.