Noah's Ark Lab, Huawei Technologies, Shenzhen, China
Abstract:Text-conditional image editing is a practical AIGC task that has recently emerged with great commercial and academic value. For real image editing, most diffusion model-based methods use DDIM Inversion as the first stage before editing. However, DDIM Inversion often results in reconstruction failure, leading to unsatisfactory performance for downstream editing. To address this problem, we first analyze why the reconstruction via DDIM Inversion fails. We then propose a new inversion and sampling method named Dual-Schedule Inversion. We also design a classifier to adaptively combine Dual-Schedule Inversion with different editing methods for user-friendly image editing. Our work can achieve superior reconstruction and editing performance with the following advantages: 1) It can reconstruct real images perfectly without fine-tuning, and its reversibility is guaranteed mathematically. 2) The edited object/scene conforms to the semantics of the text prompt. 3) The unedited parts of the object/scene retain the original identity.
Abstract:Building on the success of diffusion models in image generation and editing, video editing has recently gained substantial attention. However, maintaining temporal consistency and motion alignment still remains challenging. To address these issues, this paper proposes DINO-guided Video Editing (DIVE), a framework designed to facilitate subject-driven editing in source videos conditioned on either target text prompts or reference images with specific identities. The core of DIVE lies in leveraging the powerful semantic features extracted from a pretrained DINOv2 model as implicit correspondences to guide the editing process. Specifically, to ensure temporal motion consistency, DIVE employs DINO features to align with the motion trajectory of the source video. Extensive experiments on diverse real-world videos demonstrate that our framework can achieve high-quality editing results with robust motion consistency, highlighting the potential of DINO to contribute to video editing. For precise subject editing, DIVE incorporates the DINO features of reference images into a pretrained text-to-image model to learn Low-Rank Adaptations (LoRAs), effectively registering the target subject's identity. Project page: https://dino-video-editing.github.io
Abstract:The traditional image inpainting task aims to restore corrupted regions by referencing surrounding background and foreground. However, the object erasure task, which is in increasing demand, aims to erase objects and generate harmonious background. Previous GAN-based inpainting methods struggle with intricate texture generation. Emerging diffusion model-based algorithms, such as Stable Diffusion Inpainting, exhibit the capability to generate novel content, but they often produce incongruent results at the locations of the erased objects and require high-quality text prompt inputs. To address these challenges, we introduce MagicEraser, a diffusion model-based framework tailored for the object erasure task. It consists of two phases: content initialization and controllable generation. In the latter phase, we develop two plug-and-play modules called prompt tuning and semantics-aware attention refocus. Additionally, we propose a data construction strategy that generates training data specially suitable for this task. MagicEraser achieves fine and effective control of content generation while mitigating undesired artifacts. Experimental results highlight a valuable advancement of our approach in the object erasure task.
Abstract:In this work, we propose a training-free, trajectory-based controllable T2I approach, termed TraDiffusion. This novel method allows users to effortlessly guide image generation via mouse trajectories. To achieve precise control, we design a distance awareness energy function to effectively guide latent variables, ensuring that the focus of generation is within the areas defined by the trajectory. The energy function encompasses a control function to draw the generation closer to the specified trajectory and a movement function to diminish activity in areas distant from the trajectory. Through extensive experiments and qualitative assessments on the COCO dataset, the results reveal that TraDiffusion facilitates simpler, more natural image control. Moreover, it showcases the ability to manipulate salient regions, attributes, and relationships within the generated images, alongside visual input based on arbitrary or enhanced trajectories.
Abstract:Typical inverse rendering methods focus on learning implicit neural scene representations by modeling the geometry, materials and illumination separately, which entails significant computations for optimization. In this work we design a Unified Voxelization framework for explicit learning of scene representations, dubbed UniVoxel, which allows for efficient modeling of the geometry, materials and illumination jointly, thereby accelerating the inverse rendering significantly. To be specific, we propose to encode a scene into a latent volumetric representation, based on which the geometry, materials and illumination can be readily learned via lightweight neural networks in a unified manner. Particularly, an essential design of UniVoxel is that we leverage local Spherical Gaussians to represent the incident light radiance, which enables the seamless integration of modeling illumination into the unified voxelization framework. Such novel design enables our UniVoxel to model the joint effects of direct lighting, indirect lighting and light visibility efficiently without expensive multi-bounce ray tracing. Extensive experiments on multiple benchmarks covering diverse scenes demonstrate that UniVoxel boosts the optimization efficiency significantly compared to other methods, reducing the per-scene training time from hours to 18 minutes, while achieving favorable reconstruction quality. Code is available at https://github.com/freemantom/UniVoxel.
Abstract:Vision-Language Navigation (VLN) requires the agent to follow language instructions to reach a target position. A key factor for successful navigation is to align the landmarks implied in the instruction with diverse visual observations. However, previous VLN agents fail to perform accurate modality alignment especially in unexplored scenes, since they learn from limited navigation data and lack sufficient open-world alignment knowledge. In this work, we propose a new VLN paradigm, called COrrectable LaNdmark DiScOvery via Large ModEls (CONSOLE). In CONSOLE, we cast VLN as an open-world sequential landmark discovery problem, by introducing a novel correctable landmark discovery scheme based on two large models ChatGPT and CLIP. Specifically, we use ChatGPT to provide rich open-world landmark cooccurrence commonsense, and conduct CLIP-driven landmark discovery based on these commonsense priors. To mitigate the noise in the priors due to the lack of visual constraints, we introduce a learnable cooccurrence scoring module, which corrects the importance of each cooccurrence according to actual observations for accurate landmark discovery. We further design an observation enhancement strategy for an elegant combination of our framework with different VLN agents, where we utilize the corrected landmark features to obtain enhanced observation features for action decision. Extensive experimental results on multiple popular VLN benchmarks (R2R, REVERIE, R4R, RxR) show the significant superiority of CONSOLE over strong baselines. Especially, our CONSOLE establishes the new state-of-the-art results on R2R and R4R in unseen scenarios. Code is available at https://github.com/expectorlin/CONSOLE.
Abstract:3D Gaussian Splatting showcases notable advancements in photo-realistic and real-time novel view synthesis. However, it faces challenges in modeling mirror reflections, which exhibit substantial appearance variations from different viewpoints. To tackle this problem, we present MirrorGaussian, the first method for mirror scene reconstruction with real-time rendering based on 3D Gaussian Splatting. The key insight is grounded on the mirror symmetry between the real-world space and the virtual mirror space. We introduce an intuitive dual-rendering strategy that enables differentiable rasterization of both the real-world 3D Gaussians and the mirrored counterpart obtained by reflecting the former about the mirror plane. All 3D Gaussians are jointly optimized with the mirror plane in an end-to-end framework. MirrorGaussian achieves high-quality and real-time rendering in scenes with mirrors, empowering scene editing like adding new mirrors and objects. Comprehensive experiments on multiple datasets demonstrate that our approach significantly outperforms existing methods, achieving state-of-the-art results. Project page: https://mirror-gaussian.github.io/.
Abstract:Self-supervised learning aims to learn representation that can be effectively generalized to downstream tasks. Many self-supervised approaches regard two views of an image as both the input and the self-supervised signals, assuming that either view contains the same task-relevant information and the shared information is (approximately) sufficient for predicting downstream tasks. Recent studies show that discarding superfluous information not shared between the views can improve generalization. Hence, the ideal representation is sufficient for downstream tasks and contains minimal superfluous information, termed minimal sufficient representation. One can learn this representation by maximizing the mutual information between the representation and the supervised view while eliminating superfluous information. Nevertheless, the computation of mutual information is notoriously intractable. In this work, we propose an objective termed multi-view entropy bottleneck (MVEB) to learn minimal sufficient representation effectively. MVEB simplifies the minimal sufficient learning to maximizing both the agreement between the embeddings of two views and the differential entropy of the embedding distribution. Our experiments confirm that MVEB significantly improves performance. For example, it achieves top-1 accuracy of 76.9\% on ImageNet with a vanilla ResNet-50 backbone on linear evaluation. To the best of our knowledge, this is the new state-of-the-art result with ResNet-50.
Abstract:The pre-trained vision-language model, exemplified by CLIP, advances zero-shot semantic segmentation by aligning visual features with class embeddings through a transformer decoder to generate semantic masks. Despite its effectiveness, prevailing methods within this paradigm encounter challenges, including overfitting on seen classes and small fragmentation in masks. To mitigate these issues, we propose a Language-Driven Visual Consensus (LDVC) approach, fostering improved alignment of semantic and visual information.Specifically, we leverage class embeddings as anchors due to their discrete and abstract nature, steering vision features toward class embeddings. Moreover, to circumvent noisy alignments from the vision part due to its redundant nature, we introduce route attention into self-attention for finding visual consensus, thereby enhancing semantic consistency within the same object. Equipped with a vision-language prompting strategy, our approach significantly boosts the generalization capacity of segmentation models for unseen classes. Experimental results underscore the effectiveness of our approach, showcasing mIoU gains of 4.5 on the PASCAL VOC 2012 and 3.6 on the COCO-Stuff 164k for unseen classes compared with the state-of-the-art methods.
Abstract:Denoising diffusion models have emerged as a powerful tool for various image generation and editing tasks, facilitating the synthesis of visual content in an unconditional or input-conditional manner. The core idea behind them is learning to reverse the process of gradually adding noise to images, allowing them to generate high-quality samples from a complex distribution. In this survey, we provide an exhaustive overview of existing methods using diffusion models for image editing, covering both theoretical and practical aspects in the field. We delve into a thorough analysis and categorization of these works from multiple perspectives, including learning strategies, user-input conditions, and the array of specific editing tasks that can be accomplished. In addition, we pay special attention to image inpainting and outpainting, and explore both earlier traditional context-driven and current multimodal conditional methods, offering a comprehensive analysis of their methodologies. To further evaluate the performance of text-guided image editing algorithms, we propose a systematic benchmark, EditEval, featuring an innovative metric, LMM Score. Finally, we address current limitations and envision some potential directions for future research. The accompanying repository is released at https://github.com/SiatMMLab/Awesome-Diffusion-Model-Based-Image-Editing-Methods.