Abstract:In the advancement of industrial informatization, Unsupervised Industrial Anomaly Detection (UIAD) technology effectively overcomes the scarcity of abnormal samples and significantly enhances the automation and reliability of smart manufacturing. While RGB, 3D, and multimodal anomaly detection have demonstrated comprehensive and robust capabilities within the industrial informatization sector, existing reviews on industrial anomaly detection have not sufficiently classified and discussed methods in 3D and multimodal settings. We focus on 3D UIAD and multimodal UIAD, providing a comprehensive summary of unsupervised industrial anomaly detection in three modal settings. Firstly, we compare our surveys with recent works, introducing commonly used datasets, evaluation metrics, and the definitions of anomaly detection problems. Secondly, we summarize five research paradigms in RGB, 3D and multimodal UIAD and three emerging industrial manufacturing optimization directions in RGB UIAD, and review three multimodal feature fusion strategies in multimodal settings. Finally, we outline the primary challenges currently faced by UIAD in three modal settings, and offer insights into future development directions, aiming to provide researchers with a thorough reference and offer new perspectives for the advancement of industrial informatization. Corresponding resources are available at https://github.com/Sunny5250/Awesome-Multi-Setting-UIAD.
Abstract:The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes. Most existing methods model the image degradation process using blur kernels. However, this explicit modeling approach struggles to cover the complex and varied degradation processes encountered in the real world, such as high-order combinations of JPEG compression, blur, and noise. Implicit modeling for the degradation process can effectively overcome this issue, but a key challenge of implicit modeling is the lack of accurate ground truth labels for the degradation process to conduct supervised training. To overcome this limitations inherent in implicit modeling, we propose an \textbf{U}ncertainty-based degradation representation for blind \textbf{S}uper-\textbf{R}esolution framework (\textbf{USR}). By suppressing the uncertainty of local degradation representations in images, USR facilitated self-supervised learning of degradation representations. The USR consists of two components: Adaptive Uncertainty-Aware Degradation Extraction (AUDE) and a feature extraction network composed of Variable Depth Dynamic Convolution (VDDC) blocks. To extract Uncertainty-based Degradation Representation from LR images, the AUDE utilizes the Self-supervised Uncertainty Contrast module with Uncertainty Suppression Loss to suppress the inherent model uncertainty of the Degradation Extractor. Furthermore, VDDC block integrates degradation information through dynamic convolution. Rhe VDDC also employs an Adaptive Intensity Scaling operation that adaptively adjusts the degradation representation according to the network hierarchy, thereby facilitating the effective integration of degradation information. Quantitative and qualitative experiments affirm the superiority of our approach.
Abstract:Pre-trained diffusion models utilized for image generation encapsulate a substantial reservoir of a priori knowledge pertaining to intricate textures. Harnessing the potential of leveraging this a priori knowledge in the context of image super-resolution presents a compelling avenue. Nonetheless, prevailing diffusion-based methodologies presently overlook the constraints imposed by degradation information on the diffusion process. Furthermore, these methods fail to consider the spatial variability inherent in the estimated blur kernel, stemming from factors such as motion jitter and out-of-focus elements in open-environment scenarios. This oversight results in a notable deviation of the image super-resolution effect from fundamental realities. To address these concerns, we introduce a framework known as Adaptive Multi-modal Fusion of \textbf{S}patially Variant Kernel Refinement with Diffusion Model for Blind Image \textbf{S}uper-\textbf{R}esolution (SSR). Within the SSR framework, we propose a Spatially Variant Kernel Refinement (SVKR) module. SVKR estimates a Depth-Informed Kernel, which takes the depth information into account and is spatially variant. Additionally, SVKR enhance the accuracy of depth information acquired from LR images, allowing for mutual enhancement between the depth map and blur kernel estimates. Finally, we introduce the Adaptive Multi-Modal Fusion (AMF) module to align the information from three modalities: low-resolution images, depth maps, and blur kernels. This alignment can constrain the diffusion model to generate more authentic SR results. Quantitative and qualitative experiments affirm the superiority of our approach, while ablation experiments corroborate the effectiveness of the modules we have proposed.