Abstract:Unsupervised Continuous Anomaly Detection (UCAD) faces significant challenges in multi-task representation learning, with existing methods suffering from incomplete representation and catastrophic forgetting. Unlike supervised models, unsupervised scenarios lack prior information, making it difficult to effectively distinguish redundant and complementary multimodal features. To address this, we propose the Multimodal Task Representation Memory Bank (MTRMB) method through two key technical innovations: A Key-Prompt-Multimodal Knowledge (KPMK) mechanism that uses concise key prompts to guide cross-modal feature interaction between BERT and ViT. Refined Structure-based Contrastive Learning (RSCL) leveraging Grounding DINO and SAM to generate precise segmentation masks, pulling features of the same structural region closer while pushing different structural regions apart. Experiments on MVtec AD and VisA datasets demonstrate MTRMB's superiority, achieving an average detection accuracy of 0.921 at the lowest forgetting rate, significantly outperforming state-of-the-art methods. We plan to open source on GitHub.
Abstract:In the advancement of industrial informatization, Unsupervised Industrial Anomaly Detection (UIAD) technology effectively overcomes the scarcity of abnormal samples and significantly enhances the automation and reliability of smart manufacturing. While RGB, 3D, and multimodal anomaly detection have demonstrated comprehensive and robust capabilities within the industrial informatization sector, existing reviews on industrial anomaly detection have not sufficiently classified and discussed methods in 3D and multimodal settings. We focus on 3D UIAD and multimodal UIAD, providing a comprehensive summary of unsupervised industrial anomaly detection in three modal settings. Firstly, we compare our surveys with recent works, introducing commonly used datasets, evaluation metrics, and the definitions of anomaly detection problems. Secondly, we summarize five research paradigms in RGB, 3D and multimodal UIAD and three emerging industrial manufacturing optimization directions in RGB UIAD, and review three multimodal feature fusion strategies in multimodal settings. Finally, we outline the primary challenges currently faced by UIAD in three modal settings, and offer insights into future development directions, aiming to provide researchers with a thorough reference and offer new perspectives for the advancement of industrial informatization. Corresponding resources are available at https://github.com/Sunny5250/Awesome-Multi-Setting-UIAD.