Abstract:Text-conditional image editing is a practical AIGC task that has recently emerged with great commercial and academic value. For real image editing, most diffusion model-based methods use DDIM Inversion as the first stage before editing. However, DDIM Inversion often results in reconstruction failure, leading to unsatisfactory performance for downstream editing. To address this problem, we first analyze why the reconstruction via DDIM Inversion fails. We then propose a new inversion and sampling method named Dual-Schedule Inversion. We also design a classifier to adaptively combine Dual-Schedule Inversion with different editing methods for user-friendly image editing. Our work can achieve superior reconstruction and editing performance with the following advantages: 1) It can reconstruct real images perfectly without fine-tuning, and its reversibility is guaranteed mathematically. 2) The edited object/scene conforms to the semantics of the text prompt. 3) The unedited parts of the object/scene retain the original identity.
Abstract:Recently Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms, however, these methods often overlook latent information in less prominent regions, leading to increased sensitivity to perturbations and limited global comprehension. To solve this issue, we introduce PointACL, an attention-driven contrastive learning framework designed to address these limitations. Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions, enhancing the understanding of global structures within the point cloud. Then we combine the original pre-training loss with a contrastive learning loss, improving feature discrimination and generalization. Extensive experiments validate the effectiveness of PointACL, as it achieves state-of-the-art performance across a variety of 3D understanding tasks, including object classification, part segmentation, and few-shot learning. Specifically, when integrated with different Transformer backbones like Point-MAE and PointGPT, PointACL demonstrates improved performance on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart. This highlights its superior capability in capturing both global and local features, as well as its enhanced robustness against perturbations and incomplete data.
Abstract:Recent advancements in text-to-image (T2I) diffusion models have enabled the creation of high-quality images from text prompts, but they still struggle to generate images with precise control over specific visual concepts. Existing approaches can replicate a given concept by learning from reference images, yet they lack the flexibility for fine-grained customization of the individual component within the concept. In this paper, we introduce component-controllable personalization, a novel task that pushes the boundaries of T2I models by allowing users to reconfigure specific components when personalizing visual concepts. This task is particularly challenging due to two primary obstacles: semantic pollution, where unwanted visual elements corrupt the personalized concept, and semantic imbalance, which causes disproportionate learning of the concept and component. To overcome these challenges, we design MagicTailor, an innovative framework that leverages Dynamic Masked Degradation (DM-Deg) to dynamically perturb undesired visual semantics and Dual-Stream Balancing (DS-Bal) to establish a balanced learning paradigm for desired visual semantics. Extensive comparisons, ablations, and analyses demonstrate that MagicTailor not only excels in this challenging task but also holds significant promise for practical applications, paving the way for more nuanced and creative image generation.
Abstract:Data augmentation has proven to be a vital tool for enhancing the generalization capabilities of deep learning models, especially in the context of 3D vision where traditional datasets are often limited. Despite previous advancements, existing methods primarily cater to unimodal data scenarios, leaving a gap in the augmentation of multimodal triplet data, which integrates text, images, and point clouds. Simultaneously augmenting all three modalities enhances diversity and improves alignment across modalities, resulting in more comprehensive and robust 3D representations. To address this gap, we propose TripletMix, a novel approach to address the previously unexplored issue of multimodal data augmentation in 3D understanding. TripletMix innovatively applies the principles of mixed-based augmentation to multimodal triplet data, allowing for the preservation and optimization of cross-modal connections. Our proposed TripletMix combines feature-level and input-level augmentations to achieve dual enhancement between raw data and latent features, significantly improving the model's cross-modal understanding and generalization capabilities by ensuring feature consistency and providing diverse and realistic training samples. We demonstrate that TripletMix not only improves the baseline performance of models in various learning scenarios including zero-shot and linear probing classification but also significantly enhances model generalizability. Notably, we improved the zero-shot classification accuracy on ScanObjectNN from 51.3 percent to 61.9 percent, and on Objaverse-LVIS from 46.8 percent to 51.4 percent. Our findings highlight the potential of multimodal data augmentation to significantly advance 3D object recognition and understanding.
Abstract:Sign language recognition (SLR) plays a vital role in facilitating communication for the hearing-impaired community. SLR is a weakly supervised task where entire videos are annotated with glosses, making it challenging to identify the corresponding gloss within a video segment. Recent studies indicate that the main bottleneck in SLR is the insufficient training caused by the limited availability of large-scale datasets. To address this challenge, we present SignVTCL, a multi-modal continuous sign language recognition framework enhanced by visual-textual contrastive learning, which leverages the full potential of multi-modal data and the generalization ability of language model. SignVTCL integrates multi-modal data (video, keypoints, and optical flow) simultaneously to train a unified visual backbone, thereby yielding more robust visual representations. Furthermore, SignVTCL contains a visual-textual alignment approach incorporating gloss-level and sentence-level alignment to ensure precise correspondence between visual features and glosses at the level of individual glosses and sentence. Experimental results conducted on three datasets, Phoenix-2014, Phoenix-2014T, and CSL-Daily, demonstrate that SignVTCL achieves state-of-the-art results compared with previous methods.
Abstract:Single-shot face anti-spoofing (FAS) is a key technique for securing face recognition systems, and it requires only static images as input. However, single-shot FAS remains a challenging and under-explored problem due to two main reasons: 1) on the data side, learning FAS from RGB images is largely context-dependent, and single-shot images without additional annotations contain limited semantic information. 2) on the model side, existing single-shot FAS models are infeasible to provide proper evidence for their decisions, and FAS methods based on depth estimation require expensive per-pixel annotations. To address these issues, a large binocular NIR image dataset (BNI-FAS) is constructed and published, which contains more than 300,000 real face and plane attack images, and an Interpretable FAS Transformer (IFAST) is proposed that requires only weak supervision to produce interpretable predictions. Our IFAST can produce pixel-wise disparity maps by the proposed disparity estimation Transformer with Dynamic Matching Attention (DMA) block. Besides, a well-designed confidence map generator is adopted to cooperate with the proposed dual-teacher distillation module to obtain the final discriminant results. The comprehensive experiments show that our IFAST can achieve state-of-the-art results on BNI-FAS, proving the effectiveness of the single-shot FAS based on binocular NIR images.
Abstract:The advent of autonomous vehicles (AVs) alongside human-driven vehicles (HVs) has ushered in an era of mixed traffic flow, presenting a significant challenge: the intricate interaction between these entities within complex driving environments. AVs are expected to have human-like driving behavior to seamlessly integrate into human-dominated traffic systems. To address this issue, we propose a reinforcement learning framework that considers driving priors and Social Coordination Awareness (SCA) to optimize the behavior of AVs. The framework integrates a driving prior learning (DPL) model based on a variational autoencoder to infer the driver's driving priors from human drivers' trajectories. A policy network based on a multi-head attention mechanism is designed to effectively capture the interactive dependencies between AVs and other traffic participants to improve decision-making quality. The introduction of SCA into the autonomous driving decision-making system, and the use of Coordination Tendency (CT) to quantify the willingness of AVs to coordinate the traffic system is explored. Simulation results show that the proposed framework can not only improve the decision-making quality of AVs but also motivate them to produce social behaviors, with potential benefits for the safety and traffic efficiency of the entire transportation system.
Abstract:Large-scale well-annotated datasets are of great importance for training an effective object detector. However, obtaining accurate bounding box annotations is laborious and demanding. Unfortunately, the resultant noisy bounding boxes could cause corrupt supervision signals and thus diminish detection performance. Motivated by the observation that the real ground-truth is usually situated in the aggregation region of the proposals assigned to a noisy ground-truth, we propose DIStribution-aware CalibratiOn (DISCO) to model the spatial distribution of proposals for calibrating supervision signals. In DISCO, spatial distribution modeling is performed to statistically extract the potential locations of objects. Based on the modeled distribution, three distribution-aware techniques, i.e., distribution-aware proposal augmentation (DA-Aug), distribution-aware box refinement (DA-Ref), and distribution-aware confidence estimation (DA-Est), are developed to improve classification, localization, and interpretability, respectively. Extensive experiments on large-scale noisy image datasets (i.e., Pascal VOC and MS-COCO) demonstrate that DISCO can achieve state-of-the-art detection performance, especially at high noise levels.
Abstract:Masked Image Modeling (MIM) has achieved impressive representative performance with the aim of reconstructing randomly masked images. Despite the empirical success, most previous works have neglected the important fact that it is unreasonable to force the model to reconstruct something beyond recovery, such as those masked objects. In this work, we show that uniformly random masking widely used in previous works unavoidably loses some key objects and changes original semantic information, resulting in a misalignment problem and hurting the representative learning eventually. To address this issue, we augment MIM with a new masking strategy namely the DPPMask by substituting the random process with Determinantal Point Process (DPPs) to reduce the semantic change of the image after masking. Our method is simple yet effective and requires no extra learnable parameters when implemented within various frameworks. In particular, we evaluate our method on two representative MIM frameworks, MAE and iBOT. We show that DPPMask surpassed random sampling under both lower and higher masking ratios, indicating that DPPMask makes the reconstruction task more reasonable. We further test our method on the background challenge and multi-class classification tasks, showing that our method is more robust at various tasks.
Abstract:In subcellular biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, fluorescence staining is slow, expensive, and harmful to cells. In this paper, we treat it as a deep learning task termed subcellular structure prediction (SSP), aiming to predict the 3D fluorescent images of multiple subcellular structures from a 3D transmitted-light image. Unfortunately, due to the limitations of current biotechnology, each image is partially labeled in SSP. Besides, naturally, the subcellular structures vary considerably in size, which causes the multi-scale issue in SSP. However, traditional solutions can not address SSP well since they organize network parameters inefficiently and inflexibly. To overcome these challenges, we propose Re-parameterizing Mixture-of-Diverse-Experts (RepMode), a network that dynamically organizes its parameters with task-aware priors to handle specified single-label prediction tasks of SSP. In RepMode, the Mixture-of-Diverse-Experts (MoDE) block is designed to learn the generalized parameters for all tasks, and gating re-parameterization (GatRep) is performed to generate the specialized parameters for each task, by which RepMode can maintain a compact practical topology exactly like a plain network, and meanwhile achieves a powerful theoretical topology. Comprehensive experiments show that RepMode outperforms existing methods on ten of twelve prediction tasks of SSP and achieves state-of-the-art overall performance.