Abstract:This article explores the critical role of statistical analysis in precision medicine. It discusses how personalized healthcare is enhanced by statistical methods that interpret complex, multidimensional datasets, focusing on predictive modeling, machine learning algorithms, and data visualization techniques. The paper addresses challenges in data integration and interpretation, particularly with diverse data sources like electronic health records (EHRs) and genomic data. It also delves into ethical considerations such as patient privacy and data security. In addition, the paper highlights the evolution of statistical analysis in medicine, core statistical methodologies in precision medicine, and future directions in the field, emphasizing the integration of artificial intelligence (AI) and machine learning (ML).
Abstract:The foundation models based on pre-training technology have significantly advanced artificial intelligence from theoretical to practical applications. These models have facilitated the feasibility of computer-aided diagnosis for widespread use. Medical contrastive vision-language pre-training, which does not require human annotations, is an effective approach for guiding representation learning using description information in diagnostic reports. However, the effectiveness of pre-training is limited by the large-scale semantic overlap and shifting problems in medical field. To address these issues, we propose the Knowledge-Boosting Contrastive Vision-Language Pre-training framework (KoBo), which integrates clinical knowledge into the learning of vision-language semantic consistency. The framework uses an unbiased, open-set sample-wise knowledge representation to measure negative sample noise and supplement the correspondence between vision-language mutual information and clinical knowledge. Extensive experiments validate the effect of our framework on eight tasks including classification, segmentation, retrieval, and semantic relatedness, achieving comparable or better performance with the zero-shot or few-shot settings. Our code is open on https://github.com/ChenXiaoFei-CS/KoBo.