Abstract:Developing autonomous home robots controlled by natural language has long been a pursuit of human. While advancements in large language models (LLMs) and embodied intelligence make this goal closer, several challenges persist: the lack of a unified benchmark for more complex robot tasks, limited evaluation methods and metrics, data incompatibility between LLMs and mobile manipulation trajectories. To address these issues, we introduce Embodied Mobile Manipulation in Open Environments (EMMOE), which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space. EMMOE seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment. Additionally, we collect EMMOE-100, which features in various task attributes, detailed process annotations, re-plans after failures, and two sub-datasets for LLM training. Furthermore, we design HomieBot, a sophisticated agent system consists of LLM with Direct Preference Optimization (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms. Finally, we demonstrate HomieBot's performance and the evaluation of different models and policies.
Abstract:Inference-time alignment provides an efficient alternative for aligning LLMs with humans. However, these approaches still face challenges, such as limited scalability due to policy-specific value functions and latency during the inference phase. In this paper, we propose a novel approach, Diffusion-styled Preference Optimization (\model), which provides an efficient and policy-agnostic solution for aligning LLMs with humans. By directly performing alignment at sentence level, \model~avoids the time latency associated with token-level generation. Designed as a plug-and-play module, \model~can be seamlessly integrated with various base models to enhance their alignment. Extensive experiments on AlpacaEval 2, MT-bench, and HH-RLHF demonstrate that \model~achieves superior alignment performance across various settings, achieving a favorable trade-off between alignment quality and inference-time latency. Furthermore, \model~demonstrates model-agnostic scalability, significantly improving the performance of large models such as Llama-3-70B.
Abstract:The field of advanced text-to-image generation is witnessing the emergence of unified frameworks that integrate powerful text encoders, such as CLIP and T5, with Diffusion Transformer backbones. Although there have been efforts to control output images with additional conditions, like canny and depth map, a comprehensive framework for arbitrary text-image interleaved control is still lacking. This gap is especially evident when attempting to merge concepts or visual elements from multiple images in the generation process. To mitigate the gap, we conducted preliminary experiments showing that large multimodal models (LMMs) offer an effective shared representation space, where image and text can be well-aligned to serve as a condition for external diffusion models. Based on this discovery, we propose Dream Engine, an efficient and unified framework designed for arbitrary text-image interleaved control in image generation models. Building on powerful text-to-image models like SD3.5, we replace the original text-only encoders by incorporating versatile multimodal information encoders such as QwenVL. Our approach utilizes a two-stage training paradigm, consisting of joint text-image alignment and multimodal interleaved instruction tuning. Our experiments demonstrate that this training method is effective, achieving a 0.69 overall score on the GenEval benchmark, and matching the performance of state-of-the-art text-to-image models like SD3.5 and FLUX.
Abstract:Achieving a consistent and compact 3D segmentation field is crucial for maintaining semantic coherence across views and accurately representing scene structures. Previous 3D scene segmentation methods rely on video segmentation models to address inconsistencies across views, but the absence of spatial information often leads to object misassociation when object temporarily disappear and reappear. Furthermore, in the process of 3D scene reconstruction, segmentation and optimization are often treated as separate tasks. As a result, optimization typically lacks awareness of semantic category information, which can result in floaters with ambiguous segmentation. To address these challenges, we introduce CCGS, a method designed to achieve both view consistent 2D segmentation and a compact 3D Gaussian segmentation field. CCGS incorporates pointmap association and a piecewise-plane constraint. First, we establish pixel correspondence between adjacent images by minimizing the Euclidean distance between their pointmaps. We then redefine object mask overlap accordingly. The Hungarian algorithm is employed to optimize mask association by minimizing the total matching cost, while allowing for partial matches. To further enhance compactness, the piecewise-plane constraint restricts point displacement within local planes during optimization, thereby preserving structural integrity. Experimental results on ScanNet and Replica datasets demonstrate that CCGS outperforms existing methods in both 2D panoptic segmentation and 3D Gaussian segmentation.
Abstract:Human motion generation has advanced markedly with the advent of diffusion models. Most recent studies have concentrated on generating motion sequences based on text prompts, commonly referred to as text-to-motion generation. However, the bidirectional generation of motion and text, enabling tasks such as motion-to-text alongside text-to-motion, has been largely unexplored. This capability is essential for aligning diverse modalities and supports unconditional generation. In this paper, we introduce PackDiT, the first diffusion-based generative model capable of performing various tasks simultaneously, including motion generation, motion prediction, text generation, text-to-motion, motion-to-text, and joint motion-text generation. Our core innovation leverages mutual blocks to integrate multiple diffusion transformers (DiTs) across different modalities seamlessly. We train PackDiT on the HumanML3D dataset, achieving state-of-the-art text-to-motion performance with an FID score of 0.106, along with superior results in motion prediction and in-between tasks. Our experiments further demonstrate that diffusion models are effective for motion-to-text generation, achieving performance comparable to that of autoregressive models.
Abstract:The Segment Anything Model 2 (SAM 2) has demonstrated strong performance in object segmentation tasks but faces challenges in visual object tracking, particularly when managing crowded scenes with fast-moving or self-occluding objects. Furthermore, the fixed-window memory approach in the original model does not consider the quality of memories selected to condition the image features for the next frame, leading to error propagation in videos. This paper introduces SAMURAI, an enhanced adaptation of SAM 2 specifically designed for visual object tracking. By incorporating temporal motion cues with the proposed motion-aware memory selection mechanism, SAMURAI effectively predicts object motion and refines mask selection, achieving robust, accurate tracking without the need for retraining or fine-tuning. SAMURAI operates in real-time and demonstrates strong zero-shot performance across diverse benchmark datasets, showcasing its ability to generalize without fine-tuning. In evaluations, SAMURAI achieves significant improvements in success rate and precision over existing trackers, with a 7.1% AUC gain on LaSOT$_{\text{ext}}$ and a 3.5% AO gain on GOT-10k. Moreover, it achieves competitive results compared to fully supervised methods on LaSOT, underscoring its robustness in complex tracking scenarios and its potential for real-world applications in dynamic environments. Code and results are available at https://github.com/yangchris11/samurai.
Abstract:Multimodal Large Language Model (MLLM) has recently garnered attention as a prominent research focus. By harnessing powerful LLM, it facilitates a transition of conversational generative AI from unimodal text to performing multimodal tasks. This boom begins to significantly impact medical field. However, general visual language model (VLM) lacks sophisticated comprehension for medical visual question answering (Med-VQA). Even models specifically tailored for medical domain tend to produce vague answers with weak visual relevance. In this paper, we propose a fine-grained adaptive VLM architecture for Chinese medical visual conversations through parameter-efficient tuning. Specifically, we devise a fusion module with fine-grained vision encoders to achieve enhancement for subtle medical visual semantics. Then we note data redundancy common to medical scenes is ignored in most prior works. In cases of a single text paired with multiple figures, we utilize weighted scoring with knowledge distillation to adaptively screen valid images mirroring text descriptions. For execution, we leverage a large-scale multimodal Chinese ultrasound dataset obtained from the hospital. We create instruction-following data based on text from professional doctors, which ensures effective tuning. With enhanced model and quality data, our Large Chinese Language and Vision Assistant for Ultrasound (LLaVA-Ultra) shows strong capability and robustness to medical scenarios. On three Med-VQA datasets, LLaVA-Ultra surpasses previous state-of-the-art models on various metrics.
Abstract:Aligning with personalized preferences, which vary significantly across cultural, educational, and political differences, poses a significant challenge due to the computational costs and data demands of traditional alignment methods. In response, this paper presents Personalized Alignment at Decoding-time (PAD), a novel framework designed to align LLM outputs with diverse personalized preferences during the inference phase, eliminating the need for additional training. By introducing a unique personalized reward modeling strategy, this framework decouples the text generation process from personalized preferences, facilitating the generation of generalizable token-level personalized rewards. The PAD algorithm leverages these rewards to guide the decoding process, dynamically tailoring the base model's predictions to personalized preferences. Extensive experimental results demonstrate that PAD not only outperforms existing training-based alignment methods in terms of aligning with diverse preferences but also shows significant generalizability to preferences unseen during training and scalability across different base models. This work advances the capability of LLMs to meet user needs in real-time applications, presenting a substantial step forward in personalized LLM alignment.
Abstract:The growing interest in embodied intelligence has brought ego-centric perspectives to contemporary research. One significant challenge within this realm is the accurate localization and tracking of objects in ego-centric videos, primarily due to the substantial variability in viewing angles. Addressing this issue, this paper introduces a novel zero-shot approach for the 3D reconstruction and tracking of all objects from the ego-centric video. We present Ego3DT, a novel framework that initially identifies and extracts detection and segmentation information of objects within the ego environment. Utilizing information from adjacent video frames, Ego3DT dynamically constructs a 3D scene of the ego view using a pre-trained 3D scene reconstruction model. Additionally, we have innovated a dynamic hierarchical association mechanism for creating stable 3D tracking trajectories of objects in ego-centric videos. Moreover, the efficacy of our approach is corroborated by extensive experiments on two newly compiled datasets, with 1.04x - 2.90x in HOTA, showcasing the robustness and accuracy of our method in diverse ego-centric scenarios.
Abstract:Video detailed captioning is a key task which aims to generate comprehensive and coherent textual descriptions of video content, benefiting both video understanding and generation. In this paper, we propose AuroraCap, a video captioner based on a large multimodal model. We follow the simplest architecture design without additional parameters for temporal modeling. To address the overhead caused by lengthy video sequences, we implement the token merging strategy, reducing the number of input visual tokens. Surprisingly, we found that this strategy results in little performance loss. AuroraCap shows superior performance on various video and image captioning benchmarks, for example, obtaining a CIDEr of 88.9 on Flickr30k, beating GPT-4V (55.3) and Gemini-1.5 Pro (82.2). However, existing video caption benchmarks only include simple descriptions, consisting of a few dozen words, which limits research in this field. Therefore, we develop VDC, a video detailed captioning benchmark with over one thousand carefully annotated structured captions. In addition, we propose a new LLM-assisted metric VDCscore for bettering evaluation, which adopts a divide-and-conquer strategy to transform long caption evaluation into multiple short question-answer pairs. With the help of human Elo ranking, our experiments show that this benchmark better correlates with human judgments of video detailed captioning quality.