Abstract:High-resolution point clouds~(HRPCD) anomaly detection~(AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they still cannot meet the requirements of the HRPCD-AD task. There are several challenges: i) It is difficult to directly capture HRPCD information due to large amounts of points at the sample level; ii) The advanced transformer-based methods usually obtain anisotropic features, leading to degradation of the representation; iii) The proportion of abnormal areas is very small, which makes it difficult to characterize. To address these challenges, we propose a novel group-level feature-based network, called Group3AD, which has a significantly efficient representation ability. First, we design an Intercluster Uniformity Network~(IUN) to present the mapping of different groups in the feature space as several clusters, and obtain a more uniform distribution between clusters representing different parts of the point clouds in the feature space. Then, an Intracluster Alignment Network~(IAN) is designed to encourage groups within the cluster to be distributed tightly in the feature space. In addition, we propose an Adaptive Group-Center Selection~(AGCS) based on geometric information to improve the pixel density of potential anomalous regions during inference. The experimental results verify the effectiveness of our proposed Group3AD, which surpasses Reg3D-AD by the margin of 5\% in terms of object-level AUROC on Real3D-AD. We provide the code and supplementary information on our website: https://github.com/M-3LAB/Group3AD.
Abstract:In the realm of unsupervised image outlier detection, assigning outlier scores holds greater significance than its subsequent task: thresholding for predicting labels. This is because determining the optimal threshold on non-separable outlier score functions is an ill-posed problem. However, the lack of predicted labels not only hiders some real applications of current outlier detectors but also causes these methods not to be enhanced by leveraging the dataset's self-supervision. To advance existing scoring methods, we propose a multiple thresholding (Multi-T) module. It generates two thresholds that isolate inliers and outliers from the unlabelled target dataset, whereas outliers are employed to obtain better feature representation while inliers provide an uncontaminated manifold. Extensive experiments verify that Multi-T can significantly improve proposed outlier scoring methods. Moreover, Multi-T contributes to a naive distance-based method being state-of-the-art.
Abstract:Anomaly synthesis is one of the effective methods to augment abnormal samples for training. However, current anomaly synthesis methods predominantly rely on texture information as input, which limits the fidelity of synthesized abnormal samples. Because texture information is insufficient to correctly depict the pattern of anomalies, especially for logical anomalies. To surmount this obstacle, we present the AnomalyXFusion framework, designed to harness multi-modality information to enhance the quality of synthesized abnormal samples. The AnomalyXFusion framework comprises two distinct yet synergistic modules: the Multi-modal In-Fusion (MIF) module and the Dynamic Dif-Fusion (DDF) module. The MIF module refines modality alignment by aggregating and integrating various modality features into a unified embedding space, termed X-embedding, which includes image, text, and mask features. Concurrently, the DDF module facilitates controlled generation through an adaptive adjustment of X-embedding conditioned on the diffusion steps. In addition, to reveal the multi-modality representational power of AnomalyXFusion, we propose a new dataset, called MVTec Caption. More precisely, MVTec Caption extends 2.2k accurate image-mask-text annotations for the MVTec AD and LOCO datasets. Comprehensive evaluations demonstrate the effectiveness of AnomalyXFusion, especially regarding the fidelity and diversity for logical anomalies. Project page: http:github.com/hujiecpp/MVTec-Caption
Abstract:Transformer recently emerged as the de facto model for computer vision tasks and has also been successfully applied to shadow removal. However, these existing methods heavily rely on intricate modifications to the attention mechanisms within the transformer blocks while using a generic patch embedding. As a result, it often leads to complex architectural designs requiring additional computation resources. In this work, we aim to explore the efficacy of incorporating shadow information within the early processing stage. Accordingly, we propose a transformer-based framework with a novel patch embedding that is tailored for shadow removal, dubbed ShadowMaskFormer. Specifically, we present a simple and effective mask-augmented patch embedding to integrate shadow information and promote the model's emphasis on acquiring knowledge for shadow regions. Extensive experiments conducted on the ISTD, ISTD+, and SRD benchmark datasets demonstrate the efficacy of our method against state-of-the-art approaches while using fewer model parameters.
Abstract:High-precision point cloud anomaly detection is the gold standard for identifying the defects of advancing machining and precision manufacturing. Despite some methodological advances in this area, the scarcity of datasets and the lack of a systematic benchmark hinder its development. We introduce Real3D-AD, a challenging high-precision point cloud anomaly detection dataset, addressing the limitations in the field. With 1,254 high-resolution 3D items from forty thousand to millions of points for each item, Real3D-AD is the largest dataset for high-precision 3D industrial anomaly detection to date. Real3D-AD surpasses existing 3D anomaly detection datasets available regarding point cloud resolution (0.0010mm-0.0015mm), 360 degree coverage and perfect prototype. Additionally, we present a comprehensive benchmark for Real3D-AD, revealing the absence of baseline methods for high-precision point cloud anomaly detection. To address this, we propose Reg3D-AD, a registration-based 3D anomaly detection method incorporating a novel feature memory bank that preserves local and global representations. Extensive experiments on the Real3D-AD dataset highlight the effectiveness of Reg3D-AD. For reproducibility and accessibility, we provide the Real3D-AD dataset, benchmark source code, and Reg3D-AD on our website:https://github.com/M-3LAB/Real3D-AD.
Abstract:3D anomaly detection is an emerging and vital computer vision task in industrial manufacturing (IM). Recently many advanced algorithms have been published, but most of them cannot meet the needs of IM. There are several disadvantages: i) difficult to deploy on production lines since their algorithms heavily rely on large pre-trained models; ii) hugely increase storage overhead due to overuse of memory banks; iii) the inference speed cannot be achieved in real-time. To overcome these issues, we propose an easy and deployment-friendly network (called EasyNet) without using pre-trained models and memory banks: firstly, we design a multi-scale multi-modality feature encoder-decoder to accurately reconstruct the segmentation maps of anomalous regions and encourage the interaction between RGB images and depth images; secondly, we adopt a multi-modality anomaly segmentation network to achieve a precise anomaly map; thirdly, we propose an attention-based information entropy fusion module for feature fusion during inference, making it suitable for real-time deployment. Extensive experiments show that EasyNet achieves an anomaly detection AUROC of 92.6% without using pre-trained models and memory banks. In addition, EasyNet is faster than existing methods, with a high frame rate of 94.55 FPS on a Tesla V100 GPU.
Abstract:The problem of how to assess cross-modality medical image synthesis has been largely unexplored. The most used measures like PSNR and SSIM focus on analyzing the structural features but neglect the crucial lesion location and fundamental k-space speciality of medical images. To overcome this problem, we propose a new metric K-CROSS to spur progress on this challenging problem. Specifically, K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location, together with a tumor encoder for representing features, such as texture details and brightness intensities. To further reflect the frequency-specific information from the magnetic resonance imaging principles, both k-space features and vision features are obtained and employed in our comprehensive encoders with a frequency reconstruction penalty. The structure-shared encoders are designed and constrained with a similarity loss to capture the intrinsic common structural information for both modalities. As a consequence, the features learned from lesion regions, k-space, and anatomical structures are all captured, which serve as our quality evaluators. We evaluate the performance by constructing a large-scale cross-modality neuroimaging perceptual similarity (NIRPS) dataset with 6,000 radiologist judgments. Extensive experiments demonstrate that the proposed method outperforms other metrics, especially in comparison with the radiologists on NIRPS.
Abstract:Data augmentation is a promising technique for unsupervised anomaly detection in industrial applications, where the availability of positive samples is often limited due to factors such as commercial competition and sample collection difficulties. In this paper, how to effectively select and apply data augmentation methods for unsupervised anomaly detection is studied. The impact of various data augmentation methods on different anomaly detection algorithms is systematically investigated through experiments. The experimental results show that the performance of different industrial image anomaly detection (termed as IAD) algorithms is not significantly affected by the specific data augmentation method employed and that combining multiple data augmentation methods does not necessarily yield further improvements in the accuracy of anomaly detection, although it can achieve excellent results on specific methods. These findings provide useful guidance on selecting appropriate data augmentation methods for different requirements in IAD.
Abstract:Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently many advanced algorithms have been published, but their performance deviates greatly. We realize that the lack of actual IM settings most probably hinders the development and usage of these methods in real-world applications. As far as we know, IAD methods are not evaluated systematically. As a result, this makes it difficult for researchers to analyze them because they are designed for different or special cases. To solve this problem, we first propose a uniform IM setting to assess how well these algorithms perform, which includes several aspects, i.e., various levels of supervision (unsupervised vs. semi-supervised), few-shot learning, continual learning, noisy labels, memory usage, and inference speed. Moreover, we skillfully build a comprehensive image anomaly detection benchmark (IM-IAD) that includes 16 algorithms on 7 mainstream datasets with uniform settings. Our extensive experiments (17,017 in total) provide in-depth insights for IAD algorithm redesign or selection under the IM setting. Next, the proposed benchmark IM-IAD gives challenges as well as directions for the future. To foster reproducibility and accessibility, the source code of IM-IAD is uploaded on the website, https://github.com/M-3LAB/IM-IAD.
Abstract:The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.