Abstract:In the realm of unsupervised image outlier detection, assigning outlier scores holds greater significance than its subsequent task: thresholding for predicting labels. This is because determining the optimal threshold on non-separable outlier score functions is an ill-posed problem. However, the lack of predicted labels not only hiders some real applications of current outlier detectors but also causes these methods not to be enhanced by leveraging the dataset's self-supervision. To advance existing scoring methods, we propose a multiple thresholding (Multi-T) module. It generates two thresholds that isolate inliers and outliers from the unlabelled target dataset, whereas outliers are employed to obtain better feature representation while inliers provide an uncontaminated manifold. Extensive experiments verify that Multi-T can significantly improve proposed outlier scoring methods. Moreover, Multi-T contributes to a naive distance-based method being state-of-the-art.
Abstract:Recent advancements in Chain-of-Thought (CoT) and related rationale-based works have significantly improved the performance of Large Language Models (LLMs) in complex reasoning tasks. With the evolution of Multimodal Large Language Models (MLLMs), enhancing their capability to tackle complex multimodal reasoning problems is a crucial frontier. However, incorporating multimodal rationales in CoT has yet to be thoroughly investigated. We propose the Image-of-Thought (IoT) prompting method, which helps MLLMs to extract visual rationales step-by-step. Specifically, IoT prompting can automatically design critical visual information extraction operations based on the input images and questions. Each step of visual information refinement identifies specific visual rationales that support answers to complex visual reasoning questions. Beyond the textual CoT, IoT simultaneously utilizes visual and textual rationales to help MLLMs understand complex multimodal information. IoT prompting has improved zero-shot visual reasoning performance across various visual understanding tasks in different MLLMs. Moreover, the step-by-step visual feature explanations generated by IoT prompting elucidate the visual reasoning process, aiding in analyzing the cognitive processes of large multimodal models
Abstract:Conventional phrase grounding aims to localize noun phrases mentioned in a given caption to their corresponding image regions, which has achieved great success recently. Apparently, sole noun phrase grounding is not enough for cross-modal visual language understanding. Here we extend the task by considering pronouns as well. First, we construct a dataset of phrase grounding with both noun phrases and pronouns to image regions. Based on the dataset, we test the performance of phrase grounding by using a state-of-the-art literature model of this line. Then, we enhance the baseline grounding model with coreference information which should help our task potentially, modeling the coreference structures with graph convolutional networks. Experiments on our dataset, interestingly, show that pronouns are easier to ground than noun phrases, where the possible reason might be that these pronouns are much less ambiguous. Additionally, our final model with coreference information can significantly boost the grounding performance of both noun phrases and pronouns.