Abstract:We present Pangu Ultra, a Large Language Model (LLM) with 135 billion parameters and dense Transformer modules trained on Ascend Neural Processing Units (NPUs). Although the field of LLM has been witnessing unprecedented advances in pushing the scale and capability of LLM in recent years, training such a large-scale model still involves significant optimization and system challenges. To stabilize the training process, we propose depth-scaled sandwich normalization, which effectively eliminates loss spikes during the training process of deep models. We pre-train our model on 13.2 trillion diverse and high-quality tokens and further enhance its reasoning capabilities during post-training. To perform such large-scale training efficiently, we utilize 8,192 Ascend NPUs with a series of system optimizations. Evaluations on multiple diverse benchmarks indicate that Pangu Ultra significantly advances the state-of-the-art capabilities of dense LLMs such as Llama 405B and Mistral Large 2, and even achieves competitive results with DeepSeek-R1, whose sparse model structure contains much more parameters. Our exploration demonstrates that Ascend NPUs are capable of efficiently and effectively training dense models with more than 100 billion parameters. Our model and system will be available for our commercial customers.
Abstract:This report introduces Dolphin, a large-scale multilingual automatic speech recognition (ASR) model that extends the Whisper architecture to support a wider range of languages. Our approach integrates in-house proprietary and open-source datasets to refine and optimize Dolphin's performance. The model is specifically designed to achieve notable recognition accuracy for 40 Eastern languages across East Asia, South Asia, Southeast Asia, and the Middle East, while also supporting 22 Chinese dialects. Experimental evaluations show that Dolphin significantly outperforms current state-of-the-art open-source models across various languages. To promote reproducibility and community-driven innovation, we are making our trained models and inference source code publicly available.
Abstract:The increasing use of vision-language models (VLMs) in healthcare applications presents great challenges related to hallucinations, in which the models may generate seemingly plausible results that are in fact incorrect. Such hallucinations can jeopardize clinical decision making, potentially harming the diagnosis and treatments. In this work, we propose MedHallTune, a large-scale benchmark designed specifically to evaluate and mitigate hallucinations in medical VLMs. Comprising over 100,000 images and 1,000,000 instruction pairs, MedHallTune includes both hallucination and non-hallucination samples, each with ground-truth annotations. We conduct a comprehensive evaluation of current medical and general VLMs using MedHallTune, assessing their performance across key metrics, including clinical accuracy, relevance, detail level, and risk level. The experimental results show that fine-tuning with MedHallTune successfully improves the ability of several existing models to manage hallucinations and boost their zero-shot performance on downstream visual-question-answering (VQA) tasks, making them more reliable for practical medical applications. Our work contributes to the development of more trustworthy VLMs. Codes and dataset will be available at \href{https://github.com/russellyq/MedHallTune}{MedHallTune}.
Abstract:Recent advancements in Large Language Models (LLMs) have shown remarkable performance across a wide range of tasks. Despite this, the auto-regressive nature of LLM decoding, which generates only a single token per forward propagation, fails to fully exploit the parallel computational power of GPUs, leading to considerable latency. To address this, we introduce a novel speculative decoding method named FIRP which generates multiple tokens instead of one at each decoding step. We achieve this by predicting the intermediate hidden states of future tokens (tokens have not been decoded yet) and then using these pseudo hidden states to decode future tokens, specifically, these pseudo hidden states are predicted with simple linear transformation in intermediate layers of LLMs. Once predicted, they participate in the computation of all the following layers, thereby assimilating richer semantic information. As the layers go deeper, the semantic gap between pseudo and real hidden states is narrowed and it becomes feasible to decode future tokens with high accuracy. To validate the effectiveness of FIRP, we conduct extensive experiments, showing a speedup ratio of 1.9x-3x in several models and datasets, analytical experiments also prove our motivations.
Abstract:Whisper and other large-scale automatic speech recognition models have made significant progress in performance. However, their performance on many low-resource languages, such as Kazakh, is not satisfactory. It is worth researching how to utilize low-cost data to improve the performance of Whisper on under-represented languages. In this study, we utilized easily accessible unpaired speech and text data and combined the language model GPT with Whisper on Kazakh. We implemented end of transcript (EOT) judgment modification and hallucination penalty to improve the performance of speech recognition. Further, we employed the decoding average token log probability as a criterion to select samples from unlabeled speech data and used pseudo-labeled data to fine-tune the model to further improve its performance. Ultimately, we achieved more than 10\% absolute WER reduction in multiple experiments, and the whole process has the potential to be generalized to other under-represented languages.
Abstract:The conceptualization and categorization of natural objects in the human mind have long intrigued cognitive scientists and neuroscientists, offering crucial insights into human perception and cognition. Recently, the rapid development of Large Language Models (LLMs) has raised the attractive question of whether these models can also develop human-like object representations through exposure to vast amounts of linguistic and multimodal data. In this study, we combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in LLMs correlate with those of humans. By collecting large-scale datasets of 4.7 million triplet judgments from LLM and Multimodal LLM (MLLM), we were able to derive low-dimensional embeddings that capture the underlying similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations. Interestingly, the interpretability of the dimensions underlying these embeddings suggests that LLM and MLLM have developed human-like conceptual representations of natural objects. Further analysis demonstrated strong alignment between the identified model embeddings and neural activity patterns in many functionally defined brain ROIs (e.g., EBA, PPA, RSC and FFA). This provides compelling evidence that the object representations in LLMs, while not identical to those in the human, share fundamental commonalities that reflect key schemas of human conceptual knowledge. This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.
Abstract:The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.
Abstract:Most large language models (LLMs) are sensitive to prompts, and another synonymous expression or a typo may lead to unexpected results for the model. Composing an optimal prompt for a specific demand lacks theoretical support and relies entirely on human experimentation, which poses a considerable obstacle to popularizing generative artificial intelligence. However, there is no systematic analysis of the stability of LLMs in resisting prompt perturbations in real-world scenarios. In this work, we propose to evaluate the ease-of-use of LLMs and construct E-Bench, simulating the actual situation of human use from synonymous perturbation (including paraphrasing, simplification, and colloquialism) and typographical perturbation (such as typing). On this basis, we also discuss the combination of these two types of perturbation and analyze the main reasons for performance degradation. Experimental results indicate that with the increase of model size, although the ease-of-use are significantly improved, there is still a long way to go to build a sufficiently user-friendly model.
Abstract:The advent of large language models (LLMs) has facilitated the development of natural language text generation. It also poses unprecedented challenges, with content hallucination emerging as a significant concern. Existing solutions often involve expensive and complex interventions during the training process. Moreover, some approaches emphasize problem disassembly while neglecting the crucial validation process, leading to performance degradation or limited applications. To overcome these limitations, we propose a Markov Chain-based multi-agent debate verification framework to enhance hallucination detection accuracy in concise claims. Our method integrates the fact-checking process, including claim detection, evidence retrieval, and multi-agent verification. In the verification stage, we deploy multiple agents through flexible Markov Chain-based debates to validate individual claims, ensuring meticulous verification outcomes. Experimental results across three generative tasks demonstrate that our approach achieves significant improvements over baselines.
Abstract:Weather forecasting plays a critical role in various sectors, driving decision-making and risk management. However, traditional methods often struggle to capture the complex dynamics of meteorological systems, particularly in the presence of high-resolution data. In this paper, we propose the Spatial-Frequency Attention Network (SFANet), a novel deep learning framework designed to address these challenges and enhance the accuracy of spatiotemporal weather prediction. Drawing inspiration from the limitations of existing methodologies, we present an innovative approach that seamlessly integrates advanced token mixing and attention mechanisms. By leveraging both pooling and spatial mixing strategies, SFANet optimizes the processing of high-dimensional spatiotemporal sequences, preserving inter-component relational information and modeling extensive long-range relationships. To further enhance feature integration, we introduce a novel spatial-frequency attention module, enabling the model to capture intricate cross-modal correlations. Our extensive experimental evaluation on two distinct datasets, the Storm EVent ImageRy (SEVIR) and the Institute for Climate and Application Research (ICAR) - El Ni\~{n}o Southern Oscillation (ENSO) dataset, demonstrates the remarkable performance of SFANet. Notably, SFANet achieves substantial advancements over state-of-the-art methods, showcasing its proficiency in forecasting precipitation patterns and predicting El Ni\~{n}o events.