Abstract:Anomalous Sound Detection (ASD) has gained significant interest through the application of various Artificial Intelligence (AI) technologies in industrial settings. Though possessing great potential, ASD systems can hardly be readily deployed in real production sites due to the generalization problem, which is primarily caused by the difficulty of data collection and the complexity of environmental factors. This paper introduces a robust ASD model that leverages audio pre-trained models. Specifically, we fine-tune these models using machine operation data, employing SpecAug as a data augmentation strategy. Additionally, we investigate the impact of utilizing Low-Rank Adaptation (LoRA) tuning instead of full fine-tuning to address the problem of limited data for fine-tuning. Our experiments on the DCASE2023 Task 2 dataset establish a new benchmark of 77.75% on the evaluation set, with a significant improvement of 6.48% compared with previous state-of-the-art (SOTA) models, including top-tier traditional convolutional networks and speech pre-trained models, which demonstrates the effectiveness of audio pre-trained models with LoRA tuning. Ablation studies are also conducted to showcase the efficacy of the proposed scheme.
Abstract:Machine anomalous sound detection (ASD) has emerged as one of the most promising applications in the Industrial Internet of Things (IIoT) due to its unprecedented efficacy in mitigating risks of malfunctions and promoting production efficiency. Previous works mainly investigated the machine ASD task under centralized settings. However, developing the ASD system under decentralized settings is crucial in practice, since the machine data are dispersed in various factories and the data should not be explicitly shared due to privacy concerns. To enable these factories to cooperatively develop a scalable ASD model while preserving their privacy, we propose a novel framework named CoopASD, where each factory trains an ASD model on its local dataset, and a central server aggregates these local models periodically. We employ a pre-trained model as the backbone of the ASD model to improve its robustness and develop specialized techniques to stabilize the model under a completely non-iid and domain shift setting. Compared with previous state-of-the-art (SOTA) models trained in centralized settings, CoopASD showcases competitive results with negligible degradation of 0.08%. We also conduct extensive ablation studies to demonstrate the effectiveness of CoopASD.
Abstract:Whisper and other large-scale automatic speech recognition models have made significant progress in performance. However, their performance on many low-resource languages, such as Kazakh, is not satisfactory. It is worth researching how to utilize low-cost data to improve the performance of Whisper on under-represented languages. In this study, we utilized easily accessible unpaired speech and text data and combined the language model GPT with Whisper on Kazakh. We implemented end of transcript (EOT) judgment modification and hallucination penalty to improve the performance of speech recognition. Further, we employed the decoding average token log probability as a criterion to select samples from unlabeled speech data and used pseudo-labeled data to fine-tune the model to further improve its performance. Ultimately, we achieved more than 10\% absolute WER reduction in multiple experiments, and the whole process has the potential to be generalized to other under-represented languages.
Abstract:Large pre-trained models have demonstrated dominant performances in multiple areas, where the consistency between pre-training and fine-tuning is the key to success. However, few works reported satisfactory results of pre-trained models for the machine anomalous sound detection (ASD) task. This may be caused by the inconsistency of the pre-trained model and the inductive bias of machine audio, resulting in inconsistency in data and architecture. Thus, we propose AnoPatch which utilizes a ViT backbone pre-trained on AudioSet and fine-tunes it on machine audio. It is believed that machine audio is more related to audio datasets than speech datasets, and modeling it from patch level suits the sparsity of machine audio. As a result, AnoPatch showcases state-of-the-art (SOTA) performances on the DCASE 2020 ASD dataset and the DCASE 2023 ASD dataset. We also compare multiple pre-trained models and empirically demonstrate that better consistency yields considerable improvement.
Abstract:The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.
Abstract:As a robust and large-scale multilingual speech recognition model, Whisper has demonstrated impressive results in many low-resource and out-of-distribution scenarios. However, its encoder-decoder structure hinders its application to streaming speech recognition. In this paper, we introduce Simul-Whisper, which uses the time alignment embedded in Whisper's cross-attention to guide auto-regressive decoding and achieve chunk-based streaming ASR without any fine-tuning of the pre-trained model. Furthermore, we observe the negative effect of the truncated words at the chunk boundaries on the decoding results and propose an integrate-and-fire-based truncation detection model to address this issue. Experiments on multiple languages and Whisper architectures show that Simul-Whisper achieves an average absolute word error rate degradation of only 1.46% at a chunk size of 1 second, which significantly outperforms the current state-of-the-art baseline.
Abstract:In the wake of the surging tide of deep learning over the past decade, Automatic Speech Recognition (ASR) has garnered substantial attention, leading to the emergence of numerous publicly accessible ASR systems that are actively being integrated into our daily lives. Nonetheless, the impartial and replicable evaluation of these ASR systems encounters challenges due to various crucial subtleties. In this paper we introduce the SpeechColab Leaderboard, a general-purpose, open-source platform designed for ASR evaluation. With this platform: (i) We report a comprehensive benchmark, unveiling the current state-of-the-art panorama for ASR systems, covering both open-source models and industrial commercial services. (ii) We quantize how distinct nuances in the scoring pipeline influence the final benchmark outcomes. These include nuances related to capitalization, punctuation, interjection, contraction, synonym usage, compound words, etc. These issues have gained prominence in the context of the transition towards an End-to-End future. (iii) We propose a practical modification to the conventional Token-Error-Rate (TER) evaluation metric, with inspirations from Kolmogorov complexity and Normalized Information Distance (NID). This adaptation, called modified-TER (mTER), achieves proper normalization and symmetrical treatment of reference and hypothesis. By leveraging this platform as a large-scale testing ground, this study demonstrates the robustness and backward compatibility of mTER when compared to TER. The SpeechColab Leaderboard is accessible at https://github.com/SpeechColab/Leaderboard
Abstract:The detection of Alzheimer's disease (AD) from spontaneous speech has attracted increasing attention while the sparsity of training data remains an important issue. This paper handles the issue by knowledge transfer, specifically from both speech-generic and depression-specific knowledge. The paper first studies sequential knowledge transfer from generic foundation models pretrained on large amounts of speech and text data. A block-wise analysis is performed for AD diagnosis based on the representations extracted from different intermediate blocks of different foundation models. Apart from the knowledge from speech-generic representations, this paper also proposes to simultaneously transfer the knowledge from a speech depression detection task based on the high comorbidity rates of depression and AD. A parallel knowledge transfer framework is studied that jointly learns the information shared between these two tasks. Experimental results show that the proposed method improves AD and depression detection, and produces a state-of-the-art F1 score of 0.928 for AD diagnosis on the commonly used ADReSSo dataset.
Abstract:Multilingual self-supervised speech representation models have greatly enhanced the speech recognition performance for low-resource languages, and the compression of these huge models has also become a crucial prerequisite for their industrial application. In this paper, we propose DistilXLSR, a distilled cross-lingual speech representation model. By randomly shuffling the phonemes of existing speech, we reduce the linguistic information and distill cross-lingual models using only English data. We also design a layer-jumping initialization method to fully leverage the teacher's pre-trained weights. Experiments on 2 kinds of teacher models and 15 low-resource languages show that our method can reduce the parameters by 50% while maintaining cross-lingual representation ability. Our method is proven to be generalizable to various languages/teacher models and has the potential to improve the cross-lingual performance of the English pre-trained models.
Abstract:Self-supervised pre-trained models such as Wav2vec2, Hubert, and WavLM have been shown to significantly improve many speech tasks. However, their large memory and strong computational requirements hinder their industrial applicability. Structured pruning is a hardware-friendly model compression technique but usually results in a larger loss of accuracy. In this paper, we propose a fine-grained attention head pruning method to compensate for the performance degradation. In addition, we also introduce the straight through estimator into the L0 regularization to further accelerate the pruned model. Experiments on the SUPERB benchmark show that our model can achieve comparable performance to the dense model in multiple tasks and outperforms the Wav2vec 2.0 base model on average, with 72% fewer parameters and 2 times faster inference speed.