Abstract:Large Language Models (LLMs) have showcased exceptional performance across diverse NLP tasks, and their integration with speech encoder is rapidly emerging as a dominant trend in the Automatic Speech Recognition (ASR) field. Previous works mainly concentrated on leveraging LLMs for speech recognition in English and Chinese. However, their potential for addressing speech recognition challenges in low resource settings remains underexplored. Hence, in this work, we aim to explore the capability of LLMs in low resource ASR and Mandarin-English code switching ASR. We also evaluate and compare the recognition performance of LLM-based ASR systems against Whisper model. Extensive experiments demonstrate that LLM-based ASR yields a relative gain of 12.8\% over the Whisper model in low resource ASR while Whisper performs better in Mandarin-English code switching ASR. We hope that this study could shed light on ASR for low resource scenarios.
Abstract:The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline uses Whisper for initial transcription and TorchAudio for forced alignment, combined with multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thus enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus's high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to the Whisper large-v3 model, with merely 10% model parameters. Furthermore, our ASR models trained on Gigaspeech 2 yield superior performance compared to commercial services. We believe that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.
Abstract:Recent years have witnessed significant progress in multilingual automatic speech recognition (ASR), driven by the emergence of end-to-end (E2E) models and the scaling of multilingual datasets. Despite that, two main challenges persist in multilingual ASR: language interference and the incorporation of new languages without degrading the performance of the existing ones. This paper proposes LoRA-Whisper, which incorporates LoRA matrix into Whisper for multilingual ASR, effectively mitigating language interference. Furthermore, by leveraging LoRA and the similarities between languages, we can achieve better performance on new languages while upholding consistent performance on original ones. Experiments on a real-world task across eight languages demonstrate that our proposed LoRA-Whisper yields a relative gain of 18.5% and 23.0% over the baseline system for multilingual ASR and language expansion respectively.
Abstract:Recently, end-to-end (E2E) automatic speech recognition (ASR) models have made great strides and exhibit excellent performance in general speech recognition. However, there remain several challenging scenarios that E2E models are not competent in, such as code-switching and named entity recognition (NER). Data augmentation is a common and effective practice for these two scenarios. However, the current data augmentation methods mainly rely on audio splicing and text-to-speech (TTS) models, which might result in discontinuous, unrealistic, and less diversified speech. To mitigate these potential issues, we propose a novel data augmentation method by applying the text-based speech editing model. The augmented speech from speech editing systems is more coherent and diversified, also more akin to real speech. The experimental results on code-switching and NER tasks show that our proposed method can significantly outperform the audio splicing and neural TTS based data augmentation systems.