Abstract:Driving safety has drawn much public attention in recent years due to the fast-growing number of cars. Smoking is one of the threats to driving safety but is often ignored by drivers. Existing works on smoking detection either work in contact manner or need additional devices. This motivates us to explore the practicability of using smartphones to detect smoking events in driving environment. In this paper, we propose a cigarette smoking detection system, named HearSmoking, which only uses acoustic sensors on smartphones to improve driving safety. After investigating typical smoking habits of drivers, including hand movement and chest fluctuation, we design an acoustic signal to be emitted by the speaker and received by the microphone. We calculate Relative Correlation Coefficient of received signals to obtain movement patterns of hands and chest. The processed data is sent into a trained Convolutional Neural Network for classification of hand movement. We also design a method to detect respiration at the same time. To improve system performance, we further analyse the periodicity of the composite smoking motion. Through extensive experiments in real driving environments, HearSmoking detects smoking events with an average total accuracy of 93.44 percent in real-time.
Abstract:Fitness can help to strengthen muscles, increase resistance to diseases, and improve body shape. Nowadays, a great number of people choose to exercise at home/office rather than at the gym due to lack of time. However, it is difficult for them to get good fitness effects without professional guidance. Motivated by this, we propose the first personalized fitness monitoring system, HearFit+, using smart speakers at home/office. We explore the feasibility of using acoustic sensing to monitor fitness. We design a fitness detection method based on Doppler shift and adopt the short time energy to segment fitness actions. Based on deep learning, HearFit+ can perform fitness classification and user identification at the same time. Combined with incremental learning, users can easily add new actions. We design 4 evaluation metrics (i.e., duration, intensity, continuity, and smoothness) to help users to improve fitness effects. Through extensive experiments including over 9,000 actions of 10 types of fitness from 12 volunteers, HearFit+ can achieve an average accuracy of 96.13% on fitness classification and 91% accuracy for user identification. All volunteers confirm that HearFit+ can help improve the fitness effect in various environments.
Abstract:Since the number of cars has grown rapidly in recent years, driving safety draws more and more public attention. Drowsy driving is one of the biggest threatens to driving safety. Therefore, a simple but robust system that can detect drowsy driving with commercial off-the-shelf devices (such as smartphones) is very necessary. With this motivation, we explore the feasibility of purely using acoustic sensors embedded in smartphones to detect drowsy driving. We first study characteristics of drowsy driving, and find some unique patterns of Doppler shift caused by three typical drowsy behaviors, i.e. nodding, yawning and operating steering wheel. We then validate our important findings through empirical analysis of the driving data collected from real driving environments. We further propose a real-time Drowsy Driving Detection system (D3-Guard) based on audio devices embedded in smartphones. In order to improve the performance of our system, we adopt an effective feature extraction method based on undersampling technique and FFT, and carefully design a high-accuracy detector based on LSTM networks for the early detection of drowsy driving. Through extensive experiments with 5 volunteer drivers in real driving environments, our system can distinguish drowsy driving actions with an average total accuracy of 93.31% in real-time. Over 80% drowsy driving actions can be detected within first 70% of action duration.
Abstract:With the integration of an additional modality, large vision-language models (LVLMs) exhibit greater vulnerability to safety risks (e.g., jailbreaking) compared to their language-only predecessors. Although recent studies have devoted considerable effort to the post-hoc alignment of LVLMs, the inner safety mechanisms remain largely unexplored. In this paper, we discover that internal activations of LVLMs during the first token generation can effectively identify malicious prompts across different attacks. This inherent safety perception is governed by sparse attention heads, which we term ``safety heads." Further analysis reveals that these heads act as specialized shields against malicious prompts; ablating them leads to higher attack success rates, while the model's utility remains unaffected. By locating these safety heads and concatenating their activations, we construct a straightforward but powerful malicious prompt detector that integrates seamlessly into the generation process with minimal extra inference overhead. Despite its simple structure of a logistic regression model, the detector surprisingly exhibits strong zero-shot generalization capabilities. Experiments across various prompt-based attacks confirm the effectiveness of leveraging safety heads to protect LVLMs. Code is available at \url{https://github.com/Ziwei-Zheng/SAHs}.
Abstract:Recent advance in text-to-image diffusion models have significantly facilitated the generation of high-quality images, but also raising concerns about the illegal creation of harmful content, such as copyrighted images. Existing concept erasure methods achieve superior results in preventing the production of erased concept from prompts, but typically perform poorly in preventing undesired editing. To address this issue, we propose an Anti-Editing Concept Erasure (ACE) method, which not only erases the target concept during generation but also filters out it during editing. Specifically, we propose to inject the erasure guidance into both conditional and the unconditional noise prediction, enabling the model to effectively prevent the creation of erasure concepts during both editing and generation. Furthermore, a stochastic correction guidance is introduced during training to address the erosion of unrelated concepts. We conducted erasure editing experiments with representative editing methods (i.e., LEDITS++ and MasaCtrl) to erase IP characters, and the results indicate that our ACE effectively filters out target concepts in both types of edits. Additional experiments on erasing explicit concepts and artistic styles further demonstrate that our ACE performs favorably against state-of-the-art methods. Our code will be publicly available at https://github.com/120L020904/ACE.
Abstract:Data generation is a fundamental research problem in data management due to its diverse use cases, ranging from testing database engines to data-specific applications. However, real-world entities often involve complex interactions that cannot be effectively modeled by traditional tabular data. Therefore, graph data generation has attracted increasing attention recently. Although various graph generators have been proposed in the literature, there are three limitations: i) They cannot capture the co-evolution pattern of graph structure and node attributes. ii) Few of them consider edge direction, leading to substantial information loss. iii) Current state-of-the-art dynamic graph generators are based on the temporal random walk, making the simulation process time-consuming. To fill the research gap, we introduce VRDAG, a novel variational recurrent framework for efficient dynamic attributed graph generation. Specifically, we design a bidirectional message-passing mechanism to encode both directed structural knowledge and attribute information of a snapshot. Then, the temporal dependency in the graph sequence is captured by a recurrence state updater, generating embeddings that can preserve the evolution pattern of early graphs. Based on the hidden node embeddings, a conditional variational Bayesian method is developed to sample latent random variables at the neighboring timestep for new snapshot generation. The proposed generation paradigm avoids the time-consuming path sampling and merging process in existing random walk-based methods, significantly reducing the synthesis time. Finally, comprehensive experiments on real-world datasets are conducted to demonstrate the effectiveness and efficiency of the proposed model.
Abstract:The traditional image inpainting task aims to restore corrupted regions by referencing surrounding background and foreground. However, the object erasure task, which is in increasing demand, aims to erase objects and generate harmonious background. Previous GAN-based inpainting methods struggle with intricate texture generation. Emerging diffusion model-based algorithms, such as Stable Diffusion Inpainting, exhibit the capability to generate novel content, but they often produce incongruent results at the locations of the erased objects and require high-quality text prompt inputs. To address these challenges, we introduce MagicEraser, a diffusion model-based framework tailored for the object erasure task. It consists of two phases: content initialization and controllable generation. In the latter phase, we develop two plug-and-play modules called prompt tuning and semantics-aware attention refocus. Additionally, we propose a data construction strategy that generates training data specially suitable for this task. MagicEraser achieves fine and effective control of content generation while mitigating undesired artifacts. Experimental results highlight a valuable advancement of our approach in the object erasure task.
Abstract:With growing demands for data privacy and model robustness, graph unlearning (GU), which erases the influence of specific data on trained GNN models, has gained significant attention. However, existing exact unlearning methods suffer from either low efficiency or poor model performance. While being more utility-preserving and efficient, current approximate unlearning methods are not applicable in the zero-glance privacy setting, where the deleted samples cannot be accessed during unlearning due to immediate deletion requested by regulations. Besides, these approximate methods, which try to directly perturb model parameters still involve high privacy concerns in practice. To fill the gap, we propose Transferable Condensation Graph Unlearning (TCGU), a data-centric solution to zero-glance graph unlearning. Specifically, we first design a two-level alignment strategy to pre-condense the original graph into a small yet utility-preserving dataset. Upon receiving an unlearning request, we fine-tune the pre-condensed data with a low-rank plugin, to directly align its distribution with the remaining graph, thus efficiently revoking the information of deleted data without accessing them. A novel similarity distribution matching approach and a discrimination regularizer are proposed to effectively transfer condensed data and preserve its utility in GNN training, respectively. Finally, we retrain the GNN on the transferred condensed data. Extensive experiments on 6 benchmark datasets demonstrate that TCGU can achieve superior performance in terms of model utility, unlearning efficiency, and unlearning efficacy than existing GU methods.
Abstract:Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search, and it mainly contains two steps to find the high-performance architecture: First, the DARTS supernet that consists of mixed operations will be optimized via gradient descent. Second, the final architecture will be built by the selected operations that contribute the most to the supernet. Although DARTS improves the efficiency of NAS, it suffers from the well-known degeneration issue which can lead to deteriorating architectures. Existing works mainly attribute the degeneration issue to the failure of its supernet optimization, while little attention has been paid to the selection method. In this paper, we cease to apply the widely-used magnitude-based selection method and propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss. We show that the degeneration issue can be effectively addressed by using the proposed criterion without any modification of supernet optimization, indicating that the magnitude-based selection method can be a critical reason for the instability of DARTS. The experiments on NAS-Bench-201 and DARTS search spaces show the effectiveness of our method.
Abstract:Recently, coherent digital subcarrier multiplexing (DSCM) technology has become an attractive solution for next-generation ultra-high-speed datacenter interconnects (DCIs). To meet the requirements of low-cost and low-power consumption in DCI applications, a comprehensive simplification of the coherent DSCM system has been investigated. The pilot-tone-based polarization demultiplexing (PT-PDM) technique, known for its low-power consumption and ultra-fast polarization tracking capabilities, has emerged as a compelling alternative to the power-hungry N-tap adaptive multi-input multiple-output (MIMO) equalizer. However, the effectiveness of this PT-PDM technique is extremely vulnerable to the receiver-side XY-skew (Rx-XY-skew), which is revealed in this paper for the first time. Then, a pilot-tone-enabled modified Godard phase detector (PT-MGPD) scheme is proposed to realize Rx-XY-skew estimation, serving as the prerequisite for the successful implementation of the PT-PDM and simplification of the adaptive equalizer. Both the simulation and experiment are conducted to evaluate the accuracy of the proposed PT-MGPD scheme. The results prove it can achieve accurate estimation with an error of less than 0.3ps. Besides, a low-complexity, high-spectral-efficiency, and ultra-fast polarization demultiplexing method based on a single pilot tone (SPT) is proposed for the DSCM system in this work. Based on the proposed PT-MGPD and SPT schemes, the conventional N-tap MIMO equalizer served for each subcarrier can be successfully pruned into two polarization-independent single-input single-output equalizers, and there is no performance penalty even if the polarization rotation speed reaches 10Mrad/s. According to the results, the proposed schemes provide a hardware-efficient and reliable coherent DSCM solution for next-generation ultra-high-speed DCIs.