Abstract:Since the number of cars has grown rapidly in recent years, driving safety draws more and more public attention. Drowsy driving is one of the biggest threatens to driving safety. Therefore, a simple but robust system that can detect drowsy driving with commercial off-the-shelf devices (such as smartphones) is very necessary. With this motivation, we explore the feasibility of purely using acoustic sensors embedded in smartphones to detect drowsy driving. We first study characteristics of drowsy driving, and find some unique patterns of Doppler shift caused by three typical drowsy behaviors, i.e. nodding, yawning and operating steering wheel. We then validate our important findings through empirical analysis of the driving data collected from real driving environments. We further propose a real-time Drowsy Driving Detection system (D3-Guard) based on audio devices embedded in smartphones. In order to improve the performance of our system, we adopt an effective feature extraction method based on undersampling technique and FFT, and carefully design a high-accuracy detector based on LSTM networks for the early detection of drowsy driving. Through extensive experiments with 5 volunteer drivers in real driving environments, our system can distinguish drowsy driving actions with an average total accuracy of 93.31% in real-time. Over 80% drowsy driving actions can be detected within first 70% of action duration.
Abstract:Driving safety has drawn much public attention in recent years due to the fast-growing number of cars. Smoking is one of the threats to driving safety but is often ignored by drivers. Existing works on smoking detection either work in contact manner or need additional devices. This motivates us to explore the practicability of using smartphones to detect smoking events in driving environment. In this paper, we propose a cigarette smoking detection system, named HearSmoking, which only uses acoustic sensors on smartphones to improve driving safety. After investigating typical smoking habits of drivers, including hand movement and chest fluctuation, we design an acoustic signal to be emitted by the speaker and received by the microphone. We calculate Relative Correlation Coefficient of received signals to obtain movement patterns of hands and chest. The processed data is sent into a trained Convolutional Neural Network for classification of hand movement. We also design a method to detect respiration at the same time. To improve system performance, we further analyse the periodicity of the composite smoking motion. Through extensive experiments in real driving environments, HearSmoking detects smoking events with an average total accuracy of 93.44 percent in real-time.
Abstract:Fitness can help to strengthen muscles, increase resistance to diseases, and improve body shape. Nowadays, a great number of people choose to exercise at home/office rather than at the gym due to lack of time. However, it is difficult for them to get good fitness effects without professional guidance. Motivated by this, we propose the first personalized fitness monitoring system, HearFit+, using smart speakers at home/office. We explore the feasibility of using acoustic sensing to monitor fitness. We design a fitness detection method based on Doppler shift and adopt the short time energy to segment fitness actions. Based on deep learning, HearFit+ can perform fitness classification and user identification at the same time. Combined with incremental learning, users can easily add new actions. We design 4 evaluation metrics (i.e., duration, intensity, continuity, and smoothness) to help users to improve fitness effects. Through extensive experiments including over 9,000 actions of 10 types of fitness from 12 volunteers, HearFit+ can achieve an average accuracy of 96.13% on fitness classification and 91% accuracy for user identification. All volunteers confirm that HearFit+ can help improve the fitness effect in various environments.
Abstract:Heart rate recovery (HRR) within the initial minute following exercise is a widely utilized metric for assessing cardiac autonomic function in individuals and predicting mortality risk in patients with cardiovascular disease. However, prevailing solutions for HRR monitoring typically involve the use of specialized medical equipment or contact wearable sensors, resulting in high costs and poor user experience. In this paper, we propose a contactless HRR monitoring technique, mmHRR, which achieves accurate heart rate (HR) estimation with a commercial mmWave radar. Unlike HR estimation at rest, the HR varies quickly after exercise and the heartbeat signal entangles with the respiration harmonics. To overcome these hurdles and effectively estimate the HR from the weak and non-stationary heartbeat signal, we propose a novel signal processing pipeline, including dynamic target tracking, adaptive heartbeat signal extraction, and accurate HR estimation with composite sliding windows. Real-world experiments demonstrate that mmHRR exhibits exceptional robustness across diverse environmental conditions, and achieves an average HR estimation error of 3.31 bpm (beats per minute), 71% lower than that of the state-of-the-art method.