Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
Abstract:Structure-Based Drug Design (SBDD) aims to discover bioactive ligands. Conventional approaches construct probability paths separately in Euclidean and probabilistic spaces for continuous atomic coordinates and discrete chemical categories, leading to a mismatch with the underlying statistical manifolds. We address this issue from an information-geometric perspective by modeling molecules as composite exponential-family distributions and defining generative flows along exponential geodesics under the Fisher-Rao metric. To avoid the instantaneous trajectory collapse induced by geodesics directly targeting Dirac distributions, we propose Evolving Exponential Geodesic Flow for SBDD (EvoEGF-Mol), which replaces static Dirac targets with dynamically concentrating distributions, ensuring stable training via a progressive-parameter-refinement architecture. Our model approaches a reference-level PoseBusters passing rate (93.4%) on CrossDock, demonstrating remarkable geometric precision and interaction fidelity, while outperforming baselines on real-world MolGenBench tasks by recovering bioactive scaffolds and generating candidates that meet established MedChem filters.
Abstract:Compared to search engine result pages (SERPs), AI-generated podcasts represent a relatively new and relatively more passive modality of information consumption, delivering narratives in a naturally engaging format. As these two media increasingly converge in everyday information-seeking behavior, it is essential to explore how their interaction influences user attitudes, particularly in contexts involving controversial, value-laden, and often debated topics. Addressing this need, we aim to understand how information mediums of present-day SERPs and AI-generated podcasts interact to shape the opinions of users. To this end, through a controlled user study (N=483), we investigated user attitudinal effects of consuming information via SERPs and AI-generated podcasts, focusing on how the sequence and modality of exposure shape user opinions. A majority of users in our study corresponded to attitude change outcomes, and we found an effect of sequence on attitude change. Our results further revealed a role of viewpoint bias and the degree of topic controversiality in shaping attitude change, although we found no effect of individual moderators.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Evaluating whether multimodal large language models truly understand long-form scientific papers remains challenging: answer-only metrics and synthetic "Needle-In-A-Haystack" tests often reward answer matching without requiring a causal, evidence-linked reasoning trace in the document. We propose the "Fish-in-the-Ocean" (FITO) paradigm, which requires models to construct explicit cross-modal evidence chains within native scientific documents. To operationalize FITO, we build SIN-Data, a scientific interleaved corpus that preserves the native interleaving of text and figures. On top of it, we construct SIN-Bench with four progressive tasks covering evidence discovery (SIN-Find), hypothesis verification (SIN-Verify), grounded QA (SIN-QA), and evidence-anchored synthesis (SIN-Summary). We further introduce "No Evidence, No Score", scoring predictions when grounded to verifiable anchors and diagnosing evidence quality via matching, relevance, and logic. Experiments on eight MLLMs show that grounding is the primary bottleneck: Gemini-3-pro achieves the best average overall score (0.573), while GPT-5 attains the highest SIN-QA answer accuracy (0.767) but underperforms on evidence-aligned overall scores, exposing a gap between correctness and traceable support.
Abstract:Supervised fine-tuning (SFT) is a fundamental post-training strategy to align Large Language Models (LLMs) with human intent. However, traditional SFT often ignores the one-to-many nature of language by forcing alignment with a single reference answer, leading to the model overfitting to non-core expressions. Although our empirical analysis suggests that introducing multiple reference answers can mitigate this issue, the prohibitive data and computational costs necessitate a strategic shift: prioritizing the mitigation of single-reference overfitting over the costly pursuit of answer diversity. To achieve this, we reveal the intrinsic connection between token probability and semantic importance: high-probability tokens carry the core logical framework, while low-probability tokens are mostly replaceable expressions. Based on this insight, we propose ProFit, which selectively masks low-probability tokens to prevent surface-level overfitting. Extensive experiments confirm that ProFit consistently outperforms traditional SFT baselines on general reasoning and mathematical benchmarks.
Abstract:Large language model (LLM)-integrated applications have become increasingly prevalent, yet face critical security vulnerabilities from prompt injection (PI) attacks. Defending against PI attacks faces two major issues: malicious instructions can be injected through diverse vectors, and injected instructions often lack clear semantic boundaries from the surrounding context, making them difficult to identify. To address these issues, we propose InstruCoT, a model enhancement method for PI defense that synthesizes diverse training data and employs instruction-level chain-of-thought fine-tuning, enabling LLMs to effectively identify and reject malicious instructions regardless of their source or position in the context. We evaluate InstruCoT across three critical dimensions: Behavior Deviation, Privacy Leakage, and Harmful Output. Experimental results across four LLMs demonstrate that InstruCoT significantly outperforms baselines in all dimensions while maintaining utility performance without degradation
Abstract:Harmful memes are ever-shifting in the Internet communities, which are difficult to analyze due to their type-shifting and temporal-evolving nature. Although these memes are shifting, we find that different memes may share invariant principles, i.e., the underlying design concept of malicious users, which can help us analyze why these memes are harmful. In this paper, we propose RepMD, an ever-shifting harmful meme detection method based on the design concept reproduction. We first refer to the attack tree to define the Design Concept Graph (DCG), which describes steps that people may take to design a harmful meme. Then, we derive the DCG from historical memes with design step reproduction and graph pruning. Finally, we use DCG to guide the Multimodal Large Language Model (MLLM) to detect harmful memes. The evaluation results show that RepMD achieves the highest accuracy with 81.1% and has slight accuracy decreases when generalized to type-shifting and temporal-evolving memes. Human evaluation shows that RepMD can improve the efficiency of human discovery on harmful memes, with 15$\sim$30 seconds per meme.
Abstract:The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
Abstract:Penetration testing is essential for assessing and strengthening system security against real-world threats, yet traditional workflows remain highly manual, expertise-intensive, and difficult to scale. Although recent advances in Large Language Models (LLMs) offer promising opportunities for automation, existing applications rely on simplistic prompting without task decomposition or domain adaptation, resulting in unreliable black-box behavior and limited insight into model capabilities across penetration testing stages. To address this gap, we introduce PentestEval, the first comprehensive benchmark for evaluating LLMs across six decomposed penetration testing stages: Information Collection, Weakness Gathering and Filtering, Attack Decision-Making, Exploit Generation and Revision. PentestEval integrates expert-annotated ground truth with a fully automated evaluation pipeline across 346 tasks covering all stages in 12 realistic vulnerable scenarios. Our stage-level evaluation of 9 widely used LLMs reveals generally weak performance and distinct limitations across the stages of penetration-testing workflow. End-to-end pipelines reach only 31% success rate, and existing LLM-powered systems such as PentestGPT, PentestAgent, and VulnBot exhibit similar limitations, with autonomous agents failing almost entirely. These findings highlight that autonomous penetration testing demands stronger structured reasoning, where modularization enhances each individual stage and improves overall performance. PentestEval provides the foundational benchmark needed for future research on fine-grained, stage-level evaluation, paving the way toward more reliable LLM-based automation.




Abstract:The emergence of accurate open large language models (LLMs) has sparked a push for advanced quantization techniques to enable efficient deployment on end-user devices. In this paper, we revisit the challenge of extreme LLM compression -- targeting ultra-low-bit quantization for both activations and weights -- from a Fourier frequency domain perspective. We propose SpecQuant, a two-stage framework that tackles activation outliers and cross-channel variance. In the first stage, activation outliers are smoothed and transferred into the weight matrix to simplify downstream quantization. In the second stage, we apply channel-wise low-frequency Fourier truncation to suppress high-frequency components while preserving essential signal energy, improving quantization robustness. Our method builds on the principle that most of the weight energy is concentrated in low-frequency components, which can be retained with minimal impact on model accuracy. To enable runtime adaptability, we introduce a lightweight truncation module during inference that adjusts truncation thresholds based on channel characteristics. On LLaMA-3 8B, SpecQuant achieves 4-bit quantization for both weights and activations, narrowing the zero-shot accuracy gap to only 1.5% compared to full precision, while delivering 2 times faster inference and 3times lower memory usage.