Sid
Abstract:We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Abstract:Prompt trading has emerged as a significant intellectual property concern in recent years, where vendors entice users by showcasing sample images before selling prompt templates that can generate similar images. This work investigates a critical security vulnerability: attackers can steal prompt templates using only a limited number of sample images. To investigate this threat, we introduce Prism, a prompt-stealing benchmark consisting of 50 templates and 450 images, organized into Easy and Hard difficulty levels. To identify the vulnerabity of VLMs to prompt stealing, we propose EvoStealer, a novel template stealing method that operates without model fine-tuning by leveraging differential evolution algorithms. The system first initializes population sets using multimodal large language models (MLLMs) based on predefined patterns, then iteratively generates enhanced offspring through MLLMs. During evolution, EvoStealer identifies common features across offspring to derive generalized templates. Our comprehensive evaluation conducted across open-source (INTERNVL2-26B) and closed-source models (GPT-4o and GPT-4o-mini) demonstrates that EvoStealer's stolen templates can reproduce images highly similar to originals and effectively generalize to other subjects, significantly outperforming baseline methods with an average improvement of over 10%. Moreover, our cost analysis reveals that EvoStealer achieves template stealing with negligible computational expenses. Our code and dataset are available at https://github.com/whitepagewu/evostealer.
Abstract:The API Knowledge Graph (API KG) is a structured network that models API entities and their relations, providing essential semantic insights for tasks such as API recommendation, code generation, and API misuse detection. However, constructing a knowledge-rich and reliable API KG presents several challenges. Existing schema-based methods rely heavily on manual annotations to design KG schemas, leading to excessive manual overhead. On the other hand, schema-free methods, due to the lack of schema guidance, are prone to introducing noise, reducing the KG's reliability. To address these issues, we propose the Explore-Construct-Filter framework, an automated approach for API KG construction based on large language models (LLMs). This framework consists of three key modules: 1) KG exploration: LLMs simulate the workflow of annotators to automatically design a schema with comprehensive type triples, minimizing human intervention; 2) KG construction: Guided by the schema, LLMs extract instance triples to construct a rich yet unreliable API KG; 3) KG filtering: Removing invalid type triples and suspicious instance triples to construct a rich and reliable API KG. Experimental results demonstrate that our method surpasses the state-of-the-art method, achieving a 25.2% improvement in F1 score. Moreover, the Explore-Construct-Filter framework proves effective, with the KG exploration module increasing KG richness by 133.6% and the KG filtering module improving reliability by 26.6%. Finally, cross-model experiments confirm the generalizability of our framework.
Abstract:Information theft attacks pose a significant risk to Large Language Model (LLM) tool-learning systems. Adversaries can inject malicious commands through compromised tools, manipulating LLMs to send sensitive information to these tools, which leads to potential privacy breaches. However, existing attack approaches are black-box oriented and rely on static commands that cannot adapt flexibly to the changes in user queries and the invocation chain of tools. It makes malicious commands more likely to be detected by LLM and leads to attack failure. In this paper, we propose AutoCMD, a dynamic attack comment generation approach for information theft attacks in LLM tool-learning systems. Inspired by the concept of mimicking the familiar, AutoCMD is capable of inferring the information utilized by upstream tools in the toolchain through learning on open-source systems and reinforcement with target system examples, thereby generating more targeted commands for information theft. The evaluation results show that AutoCMD outperforms the baselines with +13.2% $ASR_{Theft}$, and can be generalized to new tool-learning systems to expose their information leakage risks. We also design four defense methods to effectively protect tool-learning systems from the attack.
Abstract:Existing domain-specific Large Language Models (LLMs) are typically developed by fine-tuning general-purposed LLMs with large-scale domain-specific corpora. However, training on large-scale corpora often fails to effectively organize domain knowledge of LLMs, leading to fragmented understanding. Inspired by how humans connect concepts and organize knowledge through mind maps, we aim to emulate this approach by using ontology with hierarchical conceptual knowledge to reorganize LLM's domain knowledge. From this perspective, we propose an ontology-driven self-training framework called OntoTune, which aims to align LLMs with ontology through in-context learning, enabling the generation of responses guided by the ontology. We leverage in-context learning to identify whether the LLM has acquired the specific concept's ontology knowledge, and select the entries not yet mastered by LLM as the training set to further align the LLM with ontology. Compared to existing domain LLMs based on newly collected large-scale domain-specific corpora, our OntoTune, which relies on the existing, long-term developed ontology and LLM itself, significantly reduces data maintenance costs and offers improved generalization ability. We conduct our study in the medical domain to evaluate the effectiveness of OntoTune, utilizing a standardized medical ontology, SNOMED CT as our ontology source. Experimental results demonstrate that OntoTune achieves state-of-the-art performance in both in-ontology task hypernym discovery and out-of-ontology task medical domain QA. Moreover, compared to the latest direct ontology injection method TaxoLLaMA, our OntoTune better preserves original knowledge of LLM. The code and data are available at https://github.com/zjukg/OntoTune.
Abstract:Transporting a heavy payload using multiple aerial robots (MARs) is an efficient manner to extend the load capacity of a single aerial robot. However, existing schemes for the multiple aerial robots transportation system (MARTS) still lack the capability to generate a collision-free and dynamically feasible trajectory in real-time and further track an agile trajectory especially when there are no sensors available to measure the states of payload and cable. Therefore, they are limited to low-agility transportation in simple environments. To bridge the gap, we propose complete planning and control schemes for the MARTS, achieving safe and agile aerial transportation (SAAT) of a cable-suspended payload in complex environments. Flatness maps for the aerial robot considering the complete kinematical constraint and the dynamical coupling between each aerial robot and payload are derived. To improve the responsiveness for the generation of the safe, dynamically feasible, and agile trajectory in complex environments, a real-time spatio-temporal trajectory planning scheme is proposed for the MARTS. Besides, we break away from the reliance on the state measurement for both the payload and cable, as well as the closed-loop control for the payload, and propose a fully distributed control scheme to track the agile trajectory that is robust against imprecise payload mass and non-point mass payload. The proposed schemes are extensively validated through benchmark comparisons, ablation studies, and simulations. Finally, extensive real-world experiments are conducted on a MARTS integrated by three aerial robots with onboard computers and sensors. The result validates the efficiency and robustness of our proposed schemes for SAAT in complex environments.
Abstract:Large Language Models (LLMs) have made notable progress in mathematical reasoning, yet they often rely on single-paradigm reasoning that limits their effectiveness across diverse tasks. In this paper, we introduce Chain-of-Reasoning (CoR), a novel unified framework that integrates multiple reasoning paradigms--Natural Language Reasoning (NLR), Algorithmic Reasoning (AR), and Symbolic Reasoning (SR)--to enable synergistic collaboration. CoR generates multiple potential answers using different reasoning paradigms and synthesizes them into a coherent final solution. We propose a Progressive Paradigm Training (PPT) strategy that allows models to progressively master these paradigms, culminating in the development of CoR-Math-7B. Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models, achieving up to a 41.0% absolute improvement over GPT-4 in theorem proving tasks and a 7.9% improvement over RL-based methods in arithmetic tasks. These results showcase the enhanced mathematical comprehensive ability of our model, achieving significant performance gains on specific tasks and enabling zero-shot generalization across tasks.
Abstract:Secure communication is crucial in many emerging systems enabled by unmanned aerial vehicle (UAV) communication networks. To protect legitimate communication in a chaotic UAV environment, where both eavesdropping and jamming become straightforward from multiple adversaries with line-of-sight signal propagation, a new reliable and integrated physical layer security mechanism is proposed in this paper for a massive multiple-input-multiple-output (MIMO) UAV system. Particularly, a physical layer fingerprint, also called a tag, is first embedded into each message for authentication purpose. We then propose to reuse the tag additionally as a reference to encode each message to ensure secrecy for confidentiality enhancement at a low cost. Specifically, we create a new dual-reference symmetric tag generation mechanism by inputting an encoding-insensitive feature of plaintext along with the key into a hash function. At a legitimate receiver, an expected tag, reliable for decoding, can be symmetrically regenerated based on the received ciphertext, and authentication can be performed by comparing the regenerated reference tag to the received tag. However, an illegitimate receiver can only receive the fuzzy tag which can not be used to decode the received message. Additionally, we introduce artificial noise (AN) to degrade eavesdropping to further decrease message leakage. To verify the efficiency of our proposed tag-based encoding (TBE) scheme, we formulate two optimization problems including ergodic sum secrecy rate maximization and authentication fail probability minimization. The power allocation solutions are derived by difference-of-convex (DC) programming and the Lagrange method, respectively. The simulation results demonstrate the superior performance of the proposed TBE approach compared to the prior AN-aided tag embedding scheme.
Abstract:Explaining multi-agent systems (MAS) is urgent as these systems become increasingly prevalent in various applications. Previous work has proveided explanations for the actions or states of agents, yet falls short in understanding the black-boxed agent's importance within a MAS and the overall team strategy. To bridge this gap, we propose EMAI, a novel agent-level explanation approach that evaluates the individual agent's importance. Inspired by counterfactual reasoning, a larger change in reward caused by the randomized action of agent indicates its higher importance. We model it as a MARL problem to capture interactions across agents. Utilizing counterfactual reasoning, EMAI learns the masking agents to identify important agents. Specifically, we define the optimization function to minimize the reward difference before and after action randomization and introduce sparsity constraints to encourage the exploration of more action randomization of agents during training. The experimental results in seven multi-agent tasks demonstratee that EMAI achieves higher fidelity in explanations than baselines and provides more effective guidance in practical applications concerning understanding policies, launching attacks, and patching policies.
Abstract:Detecting small targets in sea clutter is challenging due to dynamic maritime conditions. Existing solutions either model sea clutter for detection or extract target features based on clutter-target echo differences, including statistical and deep features. While more common, the latter often excels in controlled scenarios but struggles with robust detection and generalization in diverse environments, limiting practical use. In this letter, we propose a multi-domain features guided supervised contrastive learning (MDFG_SCL) method, which integrates statistical features derived from multi-domain differences with deep features obtained through supervised contrastive learning, thereby capturing both low-level domain-specific variations and high-level semantic information. This comprehensive feature integration enables the model to effectively distinguish between small targets and sea clutter, even under challenging conditions. Experiments conducted on real-world datasets demonstrate that the proposed shallow-to-deep detector not only achieves effective identification of small maritime targets but also maintains superior detection performance across varying sea conditions, outperforming the mainstream unsupervised contrastive learning and supervised contrastive learning methods.