Abstract:Hypergraphs are increasingly utilized in both unimodal and multimodal data scenarios due to their superior ability to model and extract higher-order relationships among nodes, compared to traditional graphs. However, current hypergraph models are encountering challenges related to imbalanced data, as this imbalance can lead to biases in the model towards the more prevalent classes. While the existing techniques, such as GraphSMOTE, have improved classification accuracy for minority samples in graph data, they still fall short when addressing the unique structure of hypergraphs. Inspired by SMOTE concept, we propose HyperSMOTE as a solution to alleviate the class imbalance issue in hypergraph learning. This method involves a two-step process: initially synthesizing minority class nodes, followed by the nodes integration into the original hypergraph. We synthesize new nodes based on samples from minority classes and their neighbors. At the same time, in order to solve the problem on integrating the new node into the hypergraph, we train a decoder based on the original hypergraph incidence matrix to adaptively associate the augmented node to hyperedges. We conduct extensive evaluation on multiple single-modality datasets, such as Cora, Cora-CA and Citeseer, as well as multimodal conversation dataset MELD to verify the effectiveness of HyperSMOTE, showing an average performance gain of 3.38% and 2.97% on accuracy, respectively.
Abstract:In recent years, the widespread adoption of distributed microservice architectures within the industry has significantly increased the demand for enhanced system availability and robustness. Due to the complex service invocation paths and dependencies at enterprise-level microservice systems, it is challenging to locate the anomalies promptly during service invocations, thus causing intractable issues for normal system operations and maintenance. In this paper, we propose a Causal Heterogeneous grAph baSed framEwork for root cause analysis, namely CHASE, for microservice systems with multimodal data, including traces, logs, and system monitoring metrics. Specifically, related information is encoded into representative embeddings and further modeled by a multimodal invocation graph. Following that, anomaly detection is performed on each instance node with attentive heterogeneous message passing from its adjacent metric and log nodes. Finally, CHASE learns from the constructed hypergraph with hyperedges representing the flow of causality and performs root cause localization. We evaluate the proposed framework on two public microservice datasets with distinct attributes and compare with the state-of-the-art methods. The results show that CHASE achieves the average performance gain up to 36.2%(A@1) and 29.4%(Percentage@1), respectively to its best counterpart.
Abstract:Telerobotic and Autonomous Robotic Ultrasound Systems (RUS) help alleviate the need for operator-dependability in free-hand ultrasound examinations. However, the state-of-the-art RUSs still rely on a human operator to apply the ultrasound gel. The lack of standardization in this process often leads to poor imaging of the scanned region. The reason for this has to do with air-gaps between the probe and the human body. In this paper, we developed a end-of-arm tool for RUS, referred to as UltraGelBot. This bot can autonomously detect and dispense the gel. It uses a deep learning model to detect the gel from images acquired using an on-board camera. A motorized mechanism is also developed, which will use this feedback and dispense the gel. Experiments on phantom revealed that UltraGelBot increases the acquired image quality by $18.6\%$ and reduces the procedure time by $37.2\%$.
Abstract:Online user-generated content games (UGCGs) are increasingly popular among children and adolescents for social interaction and more creative online entertainment. However, they pose a heightened risk of exposure to explicit content, raising growing concerns for the online safety of children and adolescents. Despite these concerns, few studies have addressed the issue of illicit image-based promotions of unsafe UGCGs on social media, which can inadvertently attract young users. This challenge arises from the difficulty of obtaining comprehensive training data for UGCG images and the unique nature of these images, which differ from traditional unsafe content. In this work, we take the first step towards studying the threat of illicit promotions of unsafe UGCGs. We collect a real-world dataset comprising 2,924 images that display diverse sexually explicit and violent content used to promote UGCGs by their game creators. Our in-depth studies reveal a new understanding of this problem and the urgent need for automatically flagging illicit UGCG promotions. We additionally create a cutting-edge system, UGCG-Guard, designed to aid social media platforms in effectively identifying images used for illicit UGCG promotions. This system leverages recently introduced large vision-language models (VLMs) and employs a novel conditional prompting strategy for zero-shot domain adaptation, along with chain-of-thought (CoT) reasoning for contextual identification. UGCG-Guard achieves outstanding results, with an accuracy rate of 94% in detecting these images used for the illicit promotion of such games in real-world scenarios.
Abstract:Hate speech has emerged as a major problem plaguing our social spaces today. While there have been significant efforts to address this problem, existing methods are still significantly limited in effectively detecting hate speech online. A major limitation of existing methods is that hate speech detection is a highly contextual problem, and these methods cannot fully capture the context of hate speech to make accurate predictions. Recently, large language models (LLMs) have demonstrated state-of-the-art performance in several natural language tasks. LLMs have undergone extensive training using vast amounts of natural language data, enabling them to grasp intricate contextual details. Hence, they could be used as knowledge bases for context-aware hate speech detection. However, a fundamental problem with using LLMs to detect hate speech is that there are no studies on effectively prompting LLMs for context-aware hate speech detection. In this study, we conduct a large-scale study of hate speech detection, employing five established hate speech datasets. We discover that LLMs not only match but often surpass the performance of current benchmark machine learning models in identifying hate speech. By proposing four diverse prompting strategies that optimize the use of LLMs in detecting hate speech. Our study reveals that a meticulously crafted reasoning prompt can effectively capture the context of hate speech by fully utilizing the knowledge base in LLMs, significantly outperforming existing techniques. Furthermore, although LLMs can provide a rich knowledge base for the contextual detection of hate speech, suitable prompting strategies play a crucial role in effectively leveraging this knowledge base for efficient detection.
Abstract:Online hate is an escalating problem that negatively impacts the lives of Internet users, and is also subject to rapid changes due to evolving events, resulting in new waves of online hate that pose a critical threat. Detecting and mitigating these new waves present two key challenges: it demands reasoning-based complex decision-making to determine the presence of hateful content, and the limited availability of training samples hinders updating the detection model. To address this critical issue, we present a novel framework called HATEGUARD for effectively moderating new waves of online hate. HATEGUARD employs a reasoning-based approach that leverages the recently introduced chain-of-thought (CoT) prompting technique, harnessing the capabilities of large language models (LLMs). HATEGUARD further achieves prompt-based zero-shot detection by automatically generating and updating detection prompts with new derogatory terms and targets in new wave samples to effectively address new waves of online hate. To demonstrate the effectiveness of our approach, we compile a new dataset consisting of tweets related to three recently witnessed new waves: the 2022 Russian invasion of Ukraine, the 2021 insurrection of the US Capitol, and the COVID-19 pandemic. Our studies reveal crucial longitudinal patterns in these new waves concerning the evolution of events and the pressing need for techniques to rapidly update existing moderation tools to counteract them. Comparative evaluations against state-of-the-art tools illustrate the superiority of our framework, showcasing a substantial 22.22% to 83.33% improvement in detecting the three new waves of online hate. Our work highlights the severe threat posed by the emergence of new waves of online hate and represents a paradigm shift in addressing this threat practically.
Abstract:Sleep stage classification is crucial for detecting patients' health conditions. Existing models, which mainly use Convolutional Neural Networks (CNN) for modelling Euclidean data and Graph Convolution Networks (GNN) for modelling non-Euclidean data, are unable to consider the heterogeneity and interactivity of multimodal data as well as the spatial-temporal correlation simultaneously, which hinders a further improvement of classification performance. In this paper, we propose a dynamic learning framework STHL, which introduces hypergraph to encode spatial-temporal data for sleep stage classification. Hypergraphs can construct multi-modal/multi-type data instead of using simple pairwise between two subjects. STHL creates spatial and temporal hyperedges separately to build node correlations, then it conducts type-specific hypergraph learning process to encode the attributes into the embedding space. Extensive experiments show that our proposed STHL outperforms the state-of-the-art models in sleep stage classification tasks.
Abstract:Neural networks are susceptible to data inference attacks such as the membership inference attack, the adversarial model inversion attack and the attribute inference attack, where the attacker could infer useful information such as the membership, the reconstruction or the sensitive attributes of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a method, namely PURIFIER, to defend against membership inference attacks. It transforms the confidence score vectors predicted by the target classifier and makes purified confidence scores indistinguishable in individual shape, statistical distribution and prediction label between members and non-members. The experimental results show that PURIFIER helps defend membership inference attacks with high effectiveness and efficiency, outperforming previous defense methods, and also incurs negligible utility loss. Besides, our further experiments show that PURIFIER is also effective in defending adversarial model inversion attacks and attribute inference attacks. For example, the inversion error is raised about 4+ times on the Facescrub530 classifier, and the attribute inference accuracy drops significantly when PURIFIER is deployed in our experiment.
Abstract:Adversarial training methods are state-of-the-art (SOTA) empirical defense methods against adversarial examples. Many regularization methods have been proven to be effective with the combination of adversarial training. Nevertheless, such regularization methods are implemented in the time domain. Since adversarial vulnerability can be regarded as a high-frequency phenomenon, it is essential to regulate the adversarially-trained neural network models in the frequency domain. Faced with these challenges, we make a theoretical analysis on the regularization property of wavelets which can enhance adversarial training. We propose a wavelet regularization method based on the Haar wavelet decomposition which is named Wavelet Average Pooling. This wavelet regularization module is integrated into the wide residual neural network so that a new WideWaveletResNet model is formed. On the datasets of CIFAR-10 and CIFAR-100, our proposed Adversarial Wavelet Training method realizes considerable robustness under different types of attacks. It verifies the assumption that our wavelet regularization method can enhance adversarial robustness especially in the deep wide neural networks. The visualization experiments of the Frequency Principle (F-Principle) and interpretability are implemented to show the effectiveness of our method. A detailed comparison based on different wavelet base functions is presented. The code is available at the repository: \url{https://github.com/momo1986/AdversarialWaveletTraining}.
Abstract:Autonomous Driving (AD) systems rely on AI components to make safety and correct driving decisions. Unfortunately, today's AI algorithms are known to be generally vulnerable to adversarial attacks. However, for such AI component-level vulnerabilities to be semantically impactful at the system level, it needs to address non-trivial semantic gaps both (1) from the system-level attack input spaces to those at AI component level, and (2) from AI component-level attack impacts to those at the system level. In this paper, we define such research space as semantic AI security as opposed to generic AI security. Over the past 5 years, increasingly more research works are performed to tackle such semantic AI security challenges in AD context, which has started to show an exponential growth trend. In this paper, we perform the first systematization of knowledge of such growing semantic AD AI security research space. In total, we collect and analyze 53 such papers, and systematically taxonomize them based on research aspects critical for the security field. We summarize 6 most substantial scientific gaps observed based on quantitative comparisons both vertically among existing AD AI security works and horizontally with security works from closely-related domains. With these, we are able to provide insights and potential future directions not only at the design level, but also at the research goal, methodology, and community levels. To address the most critical scientific methodology-level gap, we take the initiative to develop an open-source, uniform, and extensible system-driven evaluation platform, named PASS, for the semantic AD AI security research community. We also use our implemented platform prototype to showcase the capabilities and benefits of such a platform using representative semantic AD AI attacks.