Abstract:Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach.
Abstract:This article presents the design of an open-API-based explainable AI (XAI) service to provide feature contribution explanations for cloud AI services. Cloud AI services are widely used to develop domain-specific applications with precise learning metrics. However, the underlying cloud AI services remain opaque on how the model produces the prediction. We argue that XAI operations are accessible as open APIs to enable the consolidation of the XAI operations into the cloud AI services assessment. We propose a design using a microservice architecture that offers feature contribution explanations for cloud AI services without unfolding the network structure of the cloud models. We can also utilize this architecture to evaluate the model performance and XAI consistency metrics showing cloud AI services trustworthiness. We collect provenance data from operational pipelines to enable reproducibility within the XAI service. Furthermore, we present the discovery scenarios for the experimental tests regarding model performance and XAI consistency metrics for the leading cloud vision AI services. The results confirm that the architecture, based on open APIs, is cloud-agnostic. Additionally, data augmentations result in measurable improvements in XAI consistency metrics for cloud AI services.
Abstract:Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding.
Abstract:Contrastive Language-Image Pre-training (CLIP) has been widely studied and applied in numerous applications. However, the emphasis on brief summary texts during pre-training prevents CLIP from understanding long descriptions. This issue is particularly acute regarding videos given that videos often contain abundant detailed contents. In this paper, we propose the VideoCLIP-XL (eXtra Length) model, which aims to unleash the long-description understanding capability of video CLIP models. Firstly, we establish an automatic data collection system and gather a large-scale VILD pre-training dataset with VIdeo and Long-Description pairs. Then, we propose Text-similarity-guided Primary Component Matching (TPCM) to better learn the distribution of feature space while expanding the long description capability. We also introduce two new tasks namely Detail-aware Description Ranking (DDR) and Hallucination-aware Description Ranking (HDR) for further understanding improvement. Finally, we construct a Long Video Description Ranking (LVDR) benchmark for evaluating the long-description capability more comprehensively. Extensive experimental results on widely-used text-video retrieval benchmarks with both short and long descriptions and our LVDR benchmark can fully demonstrate the effectiveness of our method.
Abstract:Text-rich document understanding (TDU) refers to analyzing and comprehending documents containing substantial textual content. With the rapid evolution of large language models (LLMs), they have been widely leveraged for TDU due to their remarkable versatility and generalization. In this paper, we introduce DocLayLLM, an efficient and effective multi-modal extension of LLMs specifically designed for TDU. By integrating visual patch tokens and 2D positional tokens into LLMs and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of the chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM surpasses existing OCR-dependent methods and also outperforms OCR-free competitors.
Abstract:Non-blind rotary motion deblurring (RMD) aims to recover the latent clear image from a rotary motion blurred (RMB) image. The rotation center is a crucial input parameter in non-blind RMD methods. Existing methods directly estimate the rotation center from the RMB image. However they always suffer significant errors, and the performance of RMD is limited. For the assembled imaging systems, the position of the rotation center remains fixed. Leveraging this prior knowledge, we propose a geometric-based method for rotation center identification and analyze its error range. Furthermore, we construct a RMB imaging system. The experiment demonstrates that our method achieves less than 1-pixel error along a single axis (x-axis or y-axis). We utilize the constructed imaging system to capture real RMB images, and experimental results show that our method can help existing RMD approaches yield better RMD images.
Abstract:Inferring future activity information based on observed activity data is a crucial step to improve the accuracy of early activity prediction. Traditional methods based on generative adversarial networks(GAN) or joint learning frameworks can achieve good prediction accuracy under low observation ratios, but they usually have high computational costs. In view of this, this paper proposes a spatio-temporal encoding and decoding-based method for future human activity skeleton synthesis. Firstly, algorithms such as time control, discrete cosine transform, and low-pass filtering are used to cut or pad the skeleton sequences. Secondly, the encoder and decoder are responsible for extracting intermediate semantic encoding from observed skeleton sequences and inferring future sequences from the intermediate semantic encoding, respectively. Finally, joint displacement error, velocity error, and acceleration error, three higher-order kinematic features, are used as key components of the loss function to optimize model parameters. Experimental results show that the proposed future skeleton synthesis algorithm performs better than some existing algorithms. It generates skeleton sequences with smaller errors and fewer model parameters, effectively providing future information for early activity prediction.
Abstract:Retrieval augmented generation (RAG) exhibits outstanding performance in promoting the knowledge capabilities of large language models (LLMs) with retrieved documents related to user queries. However, RAG only focuses on improving the response quality of LLMs via enhancing queries indiscriminately with retrieved information, paying little attention to what type of knowledge LLMs really need to answer original queries more accurately. In this paper, we suggest that long-tail knowledge is crucial for RAG as LLMs have already remembered common world knowledge during large-scale pre-training. Based on our observation, we propose a simple but effective long-tail knowledge detection method for LLMs. Specifically, the novel Generative Expected Calibration Error (GECE) metric is derived to measure the ``long-tailness'' of knowledge based on both statistics and semantics. Hence, we retrieve relevant documents and infuse them into the model for patching knowledge loopholes only when the input query relates to long-tail knowledge. Experiments show that, compared to existing RAG pipelines, our method achieves over 4x speedup in average inference time and consistent performance improvement in downstream tasks.
Abstract:Recently, while large language models (LLMs) have demonstrated impressive results, they still suffer from hallucination, i.e., the generation of false information. Model editing is the task of fixing factual mistakes in LLMs; yet, most previous works treat it as a one-time task, paying little attention to ever-emerging mistakes generated by LLMs. We address the task of sequential model editing (SME) that aims to rectify mistakes continuously. A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence, preventing catastrophic forgetting during the editing process of multiple knowledge triples. Specifically, (1) for semantic fusion within a relation triple, we aggregate the intra-editing attention flow into auto-regressive self-attention with token-level granularity in LLMs. We further leverage multi-layer diagonal inter-editing attention flow to update the weighted representations of the entire sequence-level granularity. (2) Considering that auxiliary parameters are required to store the knowledge for sequential editing, we construct a new dataset named \textbf{DAFSet}, fulfilling recent, popular, long-tail and robust properties to enhance the generality of sequential editing. Experiments show DAFNet significantly outperforms strong baselines in single-turn and sequential editing. The usage of DAFSet also consistently improves the performance of other auxiliary network-based methods in various scenarios
Abstract:This paper presents EasyAnimate, an advanced method for video generation that leverages the power of transformer architecture for high-performance outcomes. We have expanded the DiT framework originally designed for 2D image synthesis to accommodate the complexities of 3D video generation by incorporating a motion module block. It is used to capture temporal dynamics, thereby ensuring the production of consistent frames and seamless motion transitions. The motion module can be adapted to various DiT baseline methods to generate video with different styles. It can also generate videos with different frame rates and resolutions during both training and inference phases, suitable for both images and videos. Moreover, we introduce slice VAE, a novel approach to condense the temporal axis, facilitating the generation of long duration videos. Currently, EasyAnimate exhibits the proficiency to generate videos with 144 frames. We provide a holistic ecosystem for video production based on DiT, encompassing aspects such as data pre-processing, VAE training, DiT models training (both the baseline model and LoRA model), and end-to-end video inference. Code is available at: https://github.com/aigc-apps/EasyAnimate. We are continuously working to enhance the performance of our method.