Abstract:Recovering the intrinsic physical attributes of a scene from images, generally termed as the inverse rendering problem, has been a central and challenging task in computer vision and computer graphics. In this paper, we present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces. This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading, effectiveness in handling complex materials. More importantly, we propose a unified shading solution that combines the advantages of both techniques for better decomposition. In addition, we analyze the normal modeling in 3D Gaussian Splatting (3DGS) and utilize the shortest axis as normal for each particle in GUS-IR, along with a depth-related regularization, resulting in improved geometric representation and better shape reconstruction. Furthermore, we enhance the probe-based baking scheme proposed by GS-IR to achieve more accurate ambient occlusion modeling to better handle indirect illumination. Extensive experiments have demonstrated the superior performance of GUS-IR in achieving precise intrinsic decomposition and geometric representation, supporting many downstream tasks (such as relighting, retouching) in computer vision, graphics, and extended reality.
Abstract:Test-time adaptation (TTA) updates the model weights during the inference stage using testing data to enhance generalization. However, this practice exposes TTA to adversarial risks. Existing studies have shown that when TTA is updated with crafted adversarial test samples, also known as test-time poisoned data, the performance on benign samples can deteriorate. Nonetheless, the perceived adversarial risk may be overstated if the poisoned data is generated under overly strong assumptions. In this work, we first review realistic assumptions for test-time data poisoning, including white-box versus grey-box attacks, access to benign data, attack budget, and more. We then propose an effective and realistic attack method that better produces poisoned samples without access to benign samples, and derive an effective in-distribution attack objective. We also design two TTA-aware attack objectives. Our benchmarks of existing attack methods reveal that the TTA methods are more robust than previously believed. In addition, we analyze effective defense strategies to help develop adversarially robust TTA methods.
Abstract:Semantic pattern of an object point cloud is determined by its topological configuration of local geometries. Learning discriminative representations can be challenging due to large shape variations of point sets in local regions and incomplete surface in a global perspective, which can be made even more severe in the context of unsupervised domain adaptation (UDA). In specific, traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries, which greatly limits their cross-domain generalization. Recently, the transformer-based models have achieved impressive performance gain in a range of image-based tasks, benefiting from its strong generalization capability and scalability stemming from capturing long range correlation across local patches. Inspired by such successes of visual transformers, we propose a novel Relational Priors Distillation (RPD) method to extract relational priors from the well-trained transformers on massive images, which can significantly empower cross-domain representations with consistent topological priors of objects. To this end, we establish a parameter-frozen pre-trained transformer module shared between 2D teacher and 3D student models, complemented by an online knowledge distillation strategy for semantically regularizing the 3D student model. Furthermore, we introduce a novel self-supervised task centered on reconstructing masked point cloud patches using corresponding masked multi-view image features, thereby empowering the model with incorporating 3D geometric information. Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification. The source code of this work is available at https://github.com/zou-longkun/RPD.git.
Abstract:Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair. This is arguably achieved by incorporating (i) 3D/2.5D shape perception from a single image, (ii) render-and-compare simulation, and (iii) rich semantic cue awareness to furnish (coarse) reference-query correspondence. Existing methods implement (i) by a 3D CAD model or well-calibrated multiple images and (ii) by training a network on specific objects, which necessitate laborious ground-truth labeling and tedious training, potentially leading to challenges in generalization. Moreover, (iii) was less exploited in the paradigm of (ii), despite that the coarse correspondence from (iii) enhances the compare process by filtering out non-overlapped parts under substantial pose differences/occlusions. Motivated by this, we propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable renderer, and (iii) with semantic cues from a pretrained model like DINOv2. Specifically, our differentiable renderer takes the 2.5D rotatable mesh textured by the RGB and the semantic maps (obtained by DINOv2 from the RGB input), then renders new RGB and semantic maps (with back-surface culling) under a novel rotated view. The refinement loss comes from comparing the rendered RGB and semantic maps with the query ones, back-propagating the gradients through the differentiable renderer to refine the 3D relative pose. As a result, our method can be readily applied to unseen objects, given only a single RGB-D reference, without label/training. Extensive experiments on LineMOD, LM-O, and YCB-V show that our training-free method significantly outperforms the SOTA supervised methods, especially under the rigorous Acc@5/10/15{\deg} metrics and the challenging cross-dataset settings.
Abstract:Existing test-time adaptation (TTA) approaches often adapt models with the unlabeled testing data stream. A recent attempt relaxed the assumption by introducing limited human annotation, referred to as Human-In-the-Loop Test-Time Adaptation (HILTTA) in this study. The focus of existing HILTTA lies on selecting the most informative samples to label, a.k.a. active learning. In this work, we are motivated by a pitfall of TTA, i.e. sensitive to hyper-parameters, and propose to approach HILTTA by synergizing active learning and model selection. Specifically, we first select samples for human annotation (active learning) and then use the labeled data to select optimal hyper-parameters (model selection). A sample selection strategy is tailored for choosing samples by considering the balance between active learning and model selection purposes. We demonstrate on 4 TTA datasets that the proposed HILTTA approach is compatible with off-the-shelf TTA methods which outperform the state-of-the-art HILTTA methods and stream-based active learning methods. Importantly, our proposed method can always prevent choosing the worst hyper-parameters on all off-the-shelf TTA methods. The source code will be released upon publication.
Abstract:Generating high-quality 3D assets from a given image is highly desirable in various applications such as AR/VR. Recent advances in single-image 3D generation explore feed-forward models that learn to infer the 3D model of an object without optimization. Though promising results have been achieved in single object generation, these methods often struggle to model complex 3D assets that inherently contain multiple objects. In this work, we present ComboVerse, a 3D generation framework that produces high-quality 3D assets with complex compositions by learning to combine multiple models. 1) We first perform an in-depth analysis of this ``multi-object gap'' from both model and data perspectives. 2) Next, with reconstructed 3D models of different objects, we seek to adjust their sizes, rotation angles, and locations to create a 3D asset that matches the given image. 3) To automate this process, we apply spatially-aware score distillation sampling (SSDS) from pretrained diffusion models to guide the positioning of objects. Our proposed framework emphasizes spatial alignment of objects, compared with standard score distillation sampling, and thus achieves more accurate results. Extensive experiments validate ComboVerse achieves clear improvements over existing methods in generating compositional 3D assets.
Abstract:The 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and its rendering at varying resolutions could produce severe blurring or jaggies. This is because 3DGS treats each pixel as an isolated, single point rather than as an area, causing insensitivity to changes in the footprints of pixels. Consequently, this discrete sampling scheme inevitably results in aliasing, owing to the restricted sampling bandwidth. In this paper, we derive an analytical solution to address this issue. More specifically, we use a conditioned logistic function as the analytic approximation of the cumulative distribution function (CDF) in a one-dimensional Gaussian signal and calculate the Gaussian integral by subtracting the CDFs. We then introduce this approximation in the two-dimensional pixel shading, and present Analytic-Splatting, which analytically approximates the Gaussian integral within the 2D-pixel window area to better capture the intensity response of each pixel. Moreover, we use the approximated response of the pixel window integral area to participate in the transmittance calculation of volume rendering, making Analytic-Splatting sensitive to the changes in pixel footprint at different resolutions. Experiments on various datasets validate that our approach has better anti-aliasing capability that gives more details and better fidelity.
Abstract:Deep Text-to-Image Synthesis (TIS) models such as Stable Diffusion have recently gained significant popularity for creative Text-to-image generation. Yet, for domain-specific scenarios, tuning-free Text-guided Image Editing (TIE) is of greater importance for application developers, which modify objects or object properties in images by manipulating feature components in attention layers during the generation process. However, little is known about what semantic meanings these attention layers have learned and which parts of the attention maps contribute to the success of image editing. In this paper, we conduct an in-depth probing analysis and demonstrate that cross-attention maps in Stable Diffusion often contain object attribution information that can result in editing failures. In contrast, self-attention maps play a crucial role in preserving the geometric and shape details of the source image during the transformation to the target image. Our analysis offers valuable insights into understanding cross and self-attention maps in diffusion models. Moreover, based on our findings, we simplify popular image editing methods and propose a more straightforward yet more stable and efficient tuning-free procedure that only modifies self-attention maps of the specified attention layers during the denoising process. Experimental results show that our simplified method consistently surpasses the performance of popular approaches on multiple datasets.
Abstract:Multi-view surface reconstruction is an ill-posed, inverse problem in 3D vision research. It involves modeling the geometry and appearance with appropriate surface representations. Most of the existing methods rely either on explicit meshes, using surface rendering of meshes for reconstruction, or on implicit field functions, using volume rendering of the fields for reconstruction. The two types of representations in fact have their respective merits. In this work, we propose a new hybrid representation, termed Sur2f, aiming to better benefit from both representations in a complementary manner. Technically, we learn two parallel streams of an implicit signed distance field and an explicit surrogate surface Sur2f mesh, and unify volume rendering of the implicit signed distance function (SDF) and surface rendering of the surrogate mesh with a shared, neural shader; the unified shading promotes their convergence to the same, underlying surface. We synchronize learning of the surrogate mesh by driving its deformation with functions induced from the implicit SDF. In addition, the synchronized surrogate mesh enables surface-guided volume sampling, which greatly improves the sampling efficiency per ray in volume rendering. We conduct thorough experiments showing that Sur$^2$f outperforms existing reconstruction methods and surface representations, including hybrid ones, in terms of both recovery quality and recovery efficiency.
Abstract:The success of large language models has inspired the computer vision community to explore image segmentation foundation model that is able to zero/few-shot generalize through prompt engineering. Segment-Anything(SAM), among others, is the state-of-the-art image segmentation foundation model demonstrating strong zero/few-shot generalization. Despite the success, recent studies reveal the weakness of SAM under strong distribution shift. In particular, SAM performs awkwardly on corrupted natural images, camouflaged images, medical images, etc. Motivated by the observations, we aim to develop a self-training based strategy to adapt SAM to target distribution. Given the unique challenges of large source dataset, high computation cost and incorrect pseudo label, we propose a weakly supervised self-training architecture with anchor regularization and low-rank finetuning to improve the robustness and computation efficiency of adaptation. We validate the effectiveness on 5 types of downstream segmentation tasks including natural clean/corrupted images, medical images, camouflaged images and robotic images. Our proposed method is task-agnostic in nature and outperforms pre-trained SAM and state-of-the-art domain adaptation methods on almost all downstream tasks with the same testing prompt inputs.