Abstract:Reinforcement Learning (RL) applied in healthcare can lead to unsafe medical decisions and treatment, such as excessive dosages or abrupt changes, often due to agents overlooking common-sense constraints. Consequently, Constrained Reinforcement Learning (CRL) is a natural choice for safe decisions. However, specifying the exact cost function is inherently difficult in healthcare. Recent Inverse Constrained Reinforcement Learning (ICRL) is a promising approach that infers constraints from expert demonstrations. ICRL algorithms model Markovian decisions in an interactive environment. These settings do not align with the practical requirement of a decision-making system in healthcare, where decisions rely on historical treatment recorded in an offline dataset. To tackle these issues, we propose the Constraint Transformer (CT). Specifically, 1) we utilize a causal attention mechanism to incorporate historical decisions and observations into the constraint modeling, while employing a Non-Markovian layer for weighted constraints to capture critical states. 2) A generative world model is used to perform exploratory data augmentation, enabling offline RL methods to simulate unsafe decision sequences. In multiple medical scenarios, empirical results demonstrate that CT can capture unsafe states and achieve strategies that approximate lower mortality rates, reducing the occurrence probability of unsafe behaviors.
Abstract:To obtain the optimal constraints in complex environments, Inverse Constrained Reinforcement Learning (ICRL) seeks to recover these constraints from expert demonstrations in a data-driven manner. Existing ICRL algorithms collect training samples from an interactive environment. However, the efficacy and efficiency of these sampling strategies remain unknown. To bridge this gap, we introduce a strategic exploration framework with provable efficiency. Specifically, we define a feasible constraint set for ICRL problems and investigate how expert policy and environmental dynamics influence the optimality of constraints. Motivated by our findings, we propose two exploratory algorithms to achieve efficient constraint inference via 1) dynamically reducing the bounded aggregate error of cost estimation and 2) strategically constraining the exploration policy. Both algorithms are theoretically grounded with tractable sample complexity. We empirically demonstrate the performance of our algorithms under various environments.
Abstract:Inverse Constrained Reinforcement Learning (ICRL) is the task of inferring the implicit constraints followed by expert agents from their demonstration data. As an emerging research topic, ICRL has received considerable attention in recent years. This article presents a categorical survey of the latest advances in ICRL. It serves as a comprehensive reference for machine learning researchers and practitioners, as well as starters seeking to comprehend the definitions, advancements, and important challenges in ICRL. We begin by formally defining the problem and outlining the algorithmic framework that facilitates constraint inference across various scenarios. These include deterministic or stochastic environments, environments with limited demonstrations, and multiple agents. For each context, we illustrate the critical challenges and introduce a series of fundamental methods to tackle these issues. This survey encompasses discrete, virtual, and realistic environments for evaluating ICRL agents. We also delve into the most pertinent applications of ICRL, such as autonomous driving, robot control, and sports analytics. To stimulate continuing research, we conclude the survey with a discussion of key unresolved questions in ICRL that can effectively foster a bridge between theoretical understanding and practical industrial applications.
Abstract:While modern Autonomous Vehicle (AV) systems can develop reliable driving policies under regular traffic conditions, they frequently struggle with safety-critical traffic scenarios. This difficulty primarily arises from the rarity of such scenarios in driving datasets and the complexities associated with predictive modeling among multiple vehicles. To support the testing and refinement of AV policies, simulating safety-critical traffic events is an essential challenge to be addressed. In this work, we introduce TrafficGamer, which facilitates game-theoretic traffic simulation by viewing common road driving as a multi-agent game. In evaluating the empirical performance across various real-world datasets, TrafficGamer ensures both fidelity and exploitability of the simulated scenarios, guaranteeing that they not only statically align with real-world traffic distribution but also efficiently capture equilibriums for representing safety-critical scenarios involving multiple agents. Additionally, the results demonstrate that TrafficGamer exhibits highly flexible simulation across various contexts. Specifically, we demonstrate that the generated scenarios can dynamically adapt to equilibriums of varying tightness by configuring risk-sensitive constraints during optimization. To the best of our knowledge, TrafficGamer is the first simulator capable of generating diverse traffic scenarios involving multiple agents. We have provided a demo webpage for the project at https://qiaoguanren.github.io/trafficgamer-demo/.
Abstract:In coming up with solutions to real-world problems, humans implicitly adhere to constraints that are too numerous and complex to be specified completely. However, reinforcement learning (RL) agents need these constraints to learn the correct optimal policy in these settings. The field of Inverse Constraint Reinforcement Learning (ICRL) deals with this problem and provides algorithms that aim to estimate the constraints from expert demonstrations collected offline. Practitioners prefer to know a measure of confidence in the estimated constraints, before deciding to use these constraints, which allows them to only use the constraints that satisfy a desired level of confidence. However, prior works do not allow users to provide the desired level of confidence for the inferred constraints. This work provides a principled ICRL method that can take a confidence level with a set of expert demonstrations and outputs a constraint that is at least as constraining as the true underlying constraint with the desired level of confidence. Further, unlike previous methods, this method allows a user to know if the number of expert trajectories is insufficient to learn a constraint with a desired level of confidence, and therefore collect more expert trajectories as required to simultaneously learn constraints with the desired level of confidence and a policy that achieves the desired level of performance.
Abstract:Restricting the variance of a policy's return is a popular choice in risk-averse Reinforcement Learning (RL) due to its clear mathematical definition and easy interpretability. Traditional methods directly restrict the total return variance. Recent methods restrict the per-step reward variance as a proxy. We thoroughly examine the limitations of these variance-based methods, such as sensitivity to numerical scale and hindering of policy learning, and propose to use an alternative risk measure, Gini deviation, as a substitute. We study various properties of this new risk measure and derive a policy gradient algorithm to minimize it. Empirical evaluation in domains where risk-aversion can be clearly defined, shows that our algorithm can mitigate the limitations of variance-based risk measures and achieves high return with low risk in terms of variance and Gini deviation when others fail to learn a reasonable policy.
Abstract:Multimodal learning has seen great success mining data features from multiple modalities with remarkable model performance improvement. Meanwhile, federated learning (FL) addresses the data sharing problem, enabling privacy-preserved collaborative training to provide sufficient precious data. Great potential, therefore, arises with the confluence of them, known as multimodal federated learning. However, limitation lies in the predominant approaches as they often assume that each local dataset records samples from all modalities. In this paper, we aim to bridge this gap by proposing an Unimodal Training - Multimodal Prediction (UTMP) framework under the context of multimodal federated learning. We design HA-Fedformer, a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client and multimodal testing by aggregating multiple clients' knowledge for better accuracy. The key advantages are twofold. Firstly, to alleviate the impact of data non-IID, we develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling. Secondly, to overcome the challenge of unaligned language sequence, we implement a cross-modal decoder aggregation to capture the hidden signal correlation between decoders trained by data from different modalities. Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models under the UTMP federated learning frameworks, with 15%-20% improvement on most attributes.
Abstract:When deploying Reinforcement Learning (RL) agents into a physical system, we must ensure that these agents are well aware of the underlying constraints. In many real-world problems, however, the constraints followed by expert agents (e.g., humans) are often hard to specify mathematically and unknown to the RL agents. To tackle these issues, Constraint Inverse Reinforcement Learning (CIRL) considers the formalism of Constrained Markov Decision Processes (CMDPs) and estimates constraints from expert demonstrations by learning a constraint function. As an emerging research topic, CIRL does not have common benchmarks, and previous works tested their algorithms with hand-crafted environments (e.g., grid worlds). In this paper, we construct a CIRL benchmark in the context of two major application domains: robot control and autonomous driving. We design relevant constraints for each environment and empirically study the ability of different algorithms to recover those constraints based on expert trajectories that respect those constraints. To handle stochastic dynamics, we propose a variational approach that infers constraint distributions, and we demonstrate its performance by comparing it with other CIRL baselines on our benchmark. The benchmark, including the information for reproducing the performance of CIRL algorithms, is publicly available at https://github.com/Guiliang/CIRL-benchmarks-public
Abstract:Inverse reinforcement learning (IRL) methods assume that the expert data is generated by an agent optimizing some reward function. However, in many settings, the agent may optimize a reward function subject to some constraints, where the constraints induce behaviors that may be otherwise difficult to express with just a reward function. We consider the setting where the reward function is given, and the constraints are unknown, and propose a method that is able to recover these constraints satisfactorily from the expert data. While previous work has focused on recovering hard constraints, our method can recover cumulative soft constraints that the agent satisfies on average per episode. In IRL fashion, our method solves this problem by adjusting the constraint function iteratively through a constrained optimization procedure, until the agent behavior matches the expert behavior. Despite the simplicity of the formulation, our method is able to obtain good results. We demonstrate our approach on synthetic environments and real world highway driving data.
Abstract:We propose a score-based DAG structure learning method for time-series data that captures linear, nonlinear, lagged and instantaneous relations among variables while ensuring acyclicity throughout the entire graph. The proposed method extends nonparametric NOTEARS, a recent continuous optimization approach for learning nonparametric instantaneous DAGs. The proposed method is faster than constraint-based methods using nonlinear conditional independence tests. We also promote the use of optimization constraints to incorporate prior knowledge into the structure learning process. A broad set of experiments with simulated data demonstrates that the proposed method discovers better DAG structures than several recent comparison methods. We also evaluate the proposed method on complex real-world data acquired from NHL ice hockey games containing a mixture of continuous and discrete variables. The code is available at https://github.com/xiangyu-sun-789/NTS-NOTEARS/.