Active learning presents a promising avenue for training high-performance models with minimal labeled data, achieved by judiciously selecting the most informative instances to label and incorporating them into the task learner. Despite notable advancements in active learning for image recognition, metrics devised or learned to gauge the information gain of data, crucial for query strategy design, do not consistently align with task model performance metrics, such as Mean Average Precision (MeanAP) in object detection tasks. This paper introduces MeanAP-Guided Reinforced Active Learning for Object Detection (MAGRAL), a novel approach that directly utilizes the MeanAP metric of the task model to devise a sampling strategy employing a reinforcement learning-based sampling agent. Built upon LSTM architecture, the agent efficiently explores and selects subsequent training instances, and optimizes the process through policy gradient with MeanAP serving as reward. Recognizing the time-intensive nature of MeanAP computation at each step, we propose fast look-up tables to expedite agent training. We assess MAGRAL's efficacy across popular benchmarks, PASCAL VOC and MS COCO, utilizing different backbone architectures. Empirical findings substantiate MAGRAL's superiority over recent state-of-the-art methods, showcasing substantial performance gains. MAGRAL establishes a robust baseline for reinforced active object detection, signifying its potential in advancing the field.