Abstract:Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts, encompassing multiple time-evolving facts, to address time-sensitive questions. This necessitates not only the parsing of temporal information within questions but also the identification and understanding of time-evolving facts to generate accurate answers. However, current large language models still have limited sensitivity to temporal information and their inadequate temporal reasoning capabilities.In this paper, we propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning. Experimental results on four TSQA datasets demonstrate that our framework significantly outperforms existing LLMs in TSQA tasks, marking a step forward in bridging the performance gap between machine and human temporal understanding and reasoning.
Abstract:With the advancement of Multimodal Large Language Models (MLLM), LLM-driven visual agents are increasingly impacting software interfaces, particularly those with graphical user interfaces. This work introduces a novel LLM-based multimodal agent framework for mobile devices. This framework, capable of navigating mobile devices, emulates human-like interactions. Our agent constructs a flexible action space that enhances adaptability across various applications including parser, text and vision descriptions. The agent operates through two main phases: exploration and deployment. During the exploration phase, functionalities of user interface elements are documented either through agent-driven or manual explorations into a customized structured knowledge base. In the deployment phase, RAG technology enables efficient retrieval and update from this knowledge base, thereby empowering the agent to perform tasks effectively and accurately. This includes performing complex, multi-step operations across various applications, thereby demonstrating the framework's adaptability and precision in handling customized task workflows. Our experimental results across various benchmarks demonstrate the framework's superior performance, confirming its effectiveness in real-world scenarios. Our code will be open source soon.
Abstract:In this study, we explore an emerging research area of Continual Learning for Temporal Sensitive Question Answering (CLTSQA). Previous research has primarily focused on Temporal Sensitive Question Answering (TSQA), often overlooking the unpredictable nature of future events. In real-world applications, it's crucial for models to continually acquire knowledge over time, rather than relying on a static, complete dataset. Our paper investigates strategies that enable models to adapt to the ever-evolving information landscape, thereby addressing the challenges inherent in CLTSQA. To support our research, we first create a novel dataset, divided into five subsets, designed specifically for various stages of continual learning. We then propose a training framework for CLTSQA that integrates temporal memory replay and temporal contrastive learning. Our experimental results highlight two significant insights: First, the CLTSQA task introduces unique challenges for existing models. Second, our proposed framework effectively navigates these challenges, resulting in improved performance.
Abstract:Few-shot unsupervised domain adaptation (FS-UDA) utilizes few-shot labeled source domain data to realize effective classification in unlabeled target domain. However, current FS-UDA methods are still suffer from two issues: 1) the data from different domains can not be effectively aligned by few-shot labeled data due to the large domain gaps, 2) it is unstable and time-consuming to generalize to new FS-UDA tasks.To address this issue, we put forward a novel Efficient Meta Prompt Learning Framework for FS-UDA. Within this framework, we use pre-trained CLIP model as the feature learning base model. First, we design domain-shared prompt learning vectors composed of virtual tokens, which mainly learns the meta knowledge from a large number of meta tasks to mitigate domain gaps. Secondly, we also design a task-shared prompt learning network to adaptively learn specific prompt vectors for each task, which aims to realize fast adaptation and task generalization. Thirdly, we learn a task-specific cross-domain alignment projection and a task-specific classifier with closed-form solutions for each meta task, which can efficiently adapt the model to new tasks in one step. The whole learning process is formulated as a bilevel optimization problem, and a good initialization of model parameters is learned through meta-learning. Extensive experimental study demonstrates the promising performance of our framework on benchmark datasets. Our method has the large improvement of at least 15.4% on 5-way 1-shot and 8.7% on 5-way 5-shot, compared with the state-of-the-art methods. Also, the performance of our method on all the test tasks is more stable than the other methods.
Abstract:In this paper, we address the challenging problem of unpaired multi-view clustering (UMC), aiming to perform effective joint clustering using unpaired observed samples across multiple views. Commonly, traditional incomplete multi-view clustering (IMC) methods often depend on paired samples to capture complementary information between views. However, the strategy becomes impractical in UMC due to the absence of paired samples. Although some researchers have attempted to tackle the issue by preserving consistent cluster structures across views, they frequently neglect the confidence of these cluster structures, especially for boundary samples and uncertain cluster structures during the initial training. Therefore, we propose a method called Multi-level Reliable Guidance for UMC (MRG-UMC), which leverages multi-level clustering to aid in learning a trustworthy cluster structure across inner-view, cross-view, and common-view, respectively. Specifically, within each view, multi-level clustering fosters a trustworthy cluster structure across different levels and reduces clustering error. In cross-view learning, reliable view guidance enhances the confidence of the cluster structures in other views. Similarly, within the multi-level framework, the incorporation of a common view aids in aligning different views, thereby reducing the clustering error and uncertainty of cluster structure. Finally, as evidenced by extensive experiments, our method for UMC demonstrates significant efficiency improvements compared to 20 state-of-the-art methods.
Abstract:Knowledge Tracing (KT) is a critical task in online education systems, aiming to monitor students' knowledge states throughout a learning period. Common KT approaches involve predicting the probability of a student correctly answering the next question based on their exercise history. However, these methods often suffer from performance degradation when faced with the scarcity of student interactions in new education systems. To address this, we leverage student interactions from existing education systems to mitigate performance degradation caused by limited training data. Nevertheless, these interactions exhibit significant differences since they are derived from different education systems. To address this issue, we propose a domain generalization approach for knowledge tracing, where existing education systems are considered source domains, and new education systems with limited data are considered target domains. Additionally, we design a domain-generalizable knowledge tracing framework (DGKT) that can be applied to any KT model. Specifically, we present a concept aggregation approach designed to reduce conceptual disparities within sequences of student interactions from diverse domains. To further mitigate domain discrepancies, we introduce a novel normalization module called Sequence Instance Normalization (SeqIN). Moreover, to fully leverage exercise information, we propose a new knowledge tracing model tailored for the domain generalization KT task, named Domain-Generalizable Relation-based Knowledge Tracing (DGRKT). Extensive experiments across five benchmark datasets demonstrate that the proposed method performs well despite limited training data.
Abstract:Our research focuses on few-shot fine-grained image classification, which faces two major challenges: appearance similarity of fine-grained objects and limited number of samples. To preserve the appearance details of images, traditional feature reconstruction networks usually enhance the representation ability of key features by spatial feature reconstruction and minimizing the reconstruction error. However, we find that relying solely on a single type of feature is insufficient for accurately capturing inter-class differences of fine-grained objects in scenarios with limited samples. In contrast, the introduction of channel features provides additional information dimensions, aiding in better understanding and distinguishing the inter-class differences of fine-grained objects. Therefore, in this paper, we design a new Hybrid Feature Collaborative Reconstruction Network (HFCR-Net) for few-shot fine-grained image classification, which includes a Hybrid Feature Fusion Process (HFFP) and a Hybrid Feature Reconstruction Process (HFRP). In HFRP, we fuse the channel features and the spatial features. Through dynamic weight adjustment, we aggregate the spatial dependencies between arbitrary two positions and the correlations between different channels of each image to increase the inter-class differences. Additionally, we introduce the reconstruction of channel dimension in HFRP. Through the collaborative reconstruction of channel dimension and spatial dimension, the inter-class differences are further increased in the process of support-to-query reconstruction, while the intra-class differences are reduced in the process of query-to-support reconstruction. Ultimately, our extensive experiments on three widely used fine-grained datasets demonstrate the effectiveness and superiority of our approach.
Abstract:This paper focuses on unpaired multi-view clustering (UMC), a challenging problem where paired observed samples are unavailable across multiple views. The goal is to perform effective joint clustering using the unpaired observed samples in all views. In incomplete multi-view clustering, existing methods typically rely on sample pairing between views to capture their complementary. However, that is not applicable in the case of UMC. Hence, we aim to extract the consistent cluster structure across views. In UMC, two challenging issues arise: uncertain cluster structure due to lack of label and uncertain pairing relationship due to absence of paired samples. We assume that the view with a good cluster structure is the reliable view, which acts as a supervisor to guide the clustering of the other views. With the guidance of reliable views, a more certain cluster structure of these views is obtained while achieving alignment between reliable views and other views. Then we propose Reliable view Guidance with one reliable view (RG-UMC) and multiple reliable views (RGs-UMC) for UMC. Specifically, we design alignment modules with one reliable view and multiple reliable views, respectively, to adaptively guide the optimization process. Also, we utilize the compactness module to enhance the relationship of samples within the same cluster. Meanwhile, an orthogonal constraint is applied to latent representation to obtain discriminate features. Extensive experiments show that both RG-UMC and RGs-UMC outperform the best state-of-the-art method by an average of 24.14\% and 29.42\% in NMI, respectively.
Abstract:In few-shot unsupervised domain adaptation (FS-UDA), most existing methods followed the few-shot learning (FSL) methods to leverage the low-level local features (learned from conventional convolutional models, e.g., ResNet) for classification. However, the goal of FS-UDA and FSL are relevant yet distinct, since FS-UDA aims to classify the samples in target domain rather than source domain. We found that the local features are insufficient to FS-UDA, which could introduce noise or bias against classification, and not be used to effectively align the domains. To address the above issues, we aim to refine the local features to be more discriminative and relevant to classification. Thus, we propose a novel task-specific semantic feature learning method (TSECS) for FS-UDA. TSECS learns high-level semantic features for image-to-class similarity measurement. Based on the high-level features, we design a cross-domain self-training strategy to leverage the few labeled samples in source domain to build the classifier in target domain. In addition, we minimize the KL divergence of the high-level feature distributions between source and target domains to shorten the distance of the samples between the two domains. Extensive experiments on DomainNet show that the proposed method significantly outperforms SOTA methods in FS-UDA by a large margin (i.e., 10%).
Abstract:This paper investigates a valuable setting called few-shot unsupervised domain adaptation (FS-UDA), which has not been sufficiently studied in the literature. In this setting, the source domain data are labelled, but with few-shot per category, while the target domain data are unlabelled. To address the FS-UDA setting, we develop a general UDA model to solve the following two key issues: the few-shot labeled data per category and the domain adaptation between support and query sets. Our model is general in that once trained it will be able to be applied to various FS-UDA tasks from the same source and target domains. Inspired by the recent local descriptor based few-shot learning (FSL), our general UDA model is fully built upon local descriptors (LDs) for image classification and domain adaptation. By proposing a novel concept called similarity patterns (SPs), our model not only effectively considers the spatial relationship of LDs that was ignored in previous FSL methods, but also makes the learned image similarity better serve the required domain alignment. Specifically, we propose a novel IMage-to-class sparse Similarity Encoding (IMSE) method. It learns SPs to extract the local discriminative information for classification and meanwhile aligns the covariance matrix of the SPs for domain adaptation. Also, domain adversarial training and multi-scale local feature matching are performed upon LDs. Extensive experiments conducted on a multi-domain benchmark dataset DomainNet demonstrates the state-of-the-art performance of our IMSE for the novel setting of FS-UDA. In addition, for FSL, our IMSE can also show better performance than most of recent FSL methods on miniImageNet.