Abstract:Recommendation systems, which assist users in discovering their preferred items among numerous options, have served billions of users across various online platforms. Intuitively, users' interactions with items are highly driven by their unchanging inherent intents (e.g., always preferring high-quality items) and changing demand intents (e.g., wanting a T-shirt in summer but a down jacket in winter). However, both types of intents are implicitly expressed in recommendation scenario, posing challenges in leveraging them for accurate intent-aware recommendations. Fortunately, in search scenario, often found alongside recommendation on the same online platform, users express their demand intents explicitly through their query words. Intuitively, in both scenarios, a user shares the same inherent intent and the interactions may be influenced by the same demand intent. It is therefore feasible to utilize the interaction data from both scenarios to reinforce the dual intents for joint intent-aware modeling. But the joint modeling should deal with two problems: 1) accurately modeling users' implicit demand intents in recommendation; 2) modeling the relation between the dual intents and the interactive items. To address these problems, we propose a novel model named Unified Dual-Intents Translation for joint modeling of Search and Recommendation (UDITSR). To accurately simulate users' demand intents in recommendation, we utilize real queries from search data as supervision information to guide its generation. To explicitly model the relation among the triplet <inherent intent, demand intent, interactive item>, we propose a dual-intent translation propagation mechanism to learn the triplet in the same semantic space via embedding translations. Extensive experiments demonstrate that UDITSR outperforms SOTA baselines both in search and recommendation tasks.
Abstract:User preferences follow a dynamic pattern over a day, e.g., at 8 am, a user might prefer to read news, while at 8 pm, they might prefer to watch movies. Time modeling aims to enable recommendation systems to perceive time changes to capture users' dynamic preferences over time, which is an important and challenging problem in recommendation systems. Especially, streaming recommendation systems in the industry, with only available samples of the current moment, present greater challenges for time modeling. There is still a lack of effective time modeling methods for streaming recommendation systems. In this paper, we propose an effective and universal method Interest Clock to perceive time information in recommendation systems. Interest Clock first encodes users' time-aware preferences into a clock (hour-level personalized features) and then uses Gaussian distribution to smooth and aggregate them into the final interest clock embedding according to the current time for the final prediction. By arming base models with Interest Clock, we conduct online A/B tests, obtaining +0.509% and +0.758% improvements on user active days and app duration respectively. Besides, the extended offline experiments show improvements as well. Interest Clock has been deployed on Douyin Music App.
Abstract:Both accuracy and timeliness are key factors in detecting fake news on social media. However, most existing methods encounter an accuracy-timeliness dilemma: Content-only methods guarantee timeliness but perform moderately because of limited available information, while social context-based ones generally perform better but inevitably lead to latency because of social context accumulation needs. To break such a dilemma, a feasible but not well-studied solution is to leverage social contexts (e.g., comments) from historical news for training a detection model and apply it to newly emerging news without social contexts. This requires the model to (1) sufficiently learn helpful knowledge from social contexts, and (2) be well compatible with situations that social contexts are available or not. To achieve this goal, we propose to absorb and parameterize useful knowledge from comments in historical news and then inject it into a content-only detection model. Specifically, we design the Comments Assisted Fake News Detection method (CAS-FEND), which transfers useful knowledge from a comments-aware teacher model to a content-only student model during training. The student model is further used to detect newly emerging fake news. Experiments show that the CAS-FEND student model outperforms all content-only methods and even those with 1/4 comments as inputs, demonstrating its superiority for early detection.
Abstract:Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework. The code is available at https://github.com/ICTMCG/FTT-ACL23.
Abstract:Takeaway recommender systems, which aim to accurately provide stores that offer foods meeting users' interests, have served billions of users in our daily life. Different from traditional recommendation, takeaway recommendation faces two main challenges: (1) Dual Interaction-Aware Preference Modeling. Traditional recommendation commonly focuses on users' single preferences for items while takeaway recommendation needs to comprehensively consider users' dual preferences for stores and foods. (2) Period-Varying Preference Modeling. Conventional recommendation generally models continuous changes in users' preferences from a session-level or day-level perspective. However, in practical takeaway systems, users' preferences vary significantly during the morning, noon, night, and late night periods of the day. To address these challenges, we propose a Dual Period-Varying Preference modeling (DPVP) for takeaway recommendation. Specifically, we design a dual interaction-aware module, aiming to capture users' dual preferences based on their interactions with stores and foods. Moreover, to model various preferences in different time periods of the day, we propose a time-based decomposition module as well as a time-aware gating mechanism. Extensive offline and online experiments demonstrate that our model outperforms state-of-the-art methods on real-world datasets and it is capable of modeling the dual period-varying preferences. Moreover, our model has been deployed online on Meituan Takeaway platform, leading to an average improvement in GMV (Gross Merchandise Value) of 0.70%.
Abstract:Recently, a series of pioneer studies have shown the potency of pre-trained models in sequential recommendation, illuminating the path of building an omniscient unified pre-trained recommendation model for different downstream recommendation tasks. Despite these advancements, the vulnerabilities of classical recommender systems also exist in pre-trained recommendation in a new form, while the security of pre-trained recommendation model is still unexplored, which may threaten its widely practical applications. In this study, we propose a novel framework for backdoor attacking in pre-trained recommendation. We demonstrate the provider of the pre-trained model can easily insert a backdoor in pre-training, thereby increasing the exposure rates of target items to target user groups. Specifically, we design two novel and effective backdoor attacks: basic replacement and prompt-enhanced, under various recommendation pre-training usage scenarios. Experimental results on real-world datasets show that our proposed attack strategies significantly improve the exposure rates of target items to target users by hundreds of times in comparison to the clean model.
Abstract:Both real and fake news in various domains, such as politics, health, and entertainment are spread via online social media every day, necessitating fake news detection for multiple domains. Among them, fake news in specific domains like politics and health has more serious potential negative impacts on the real world (e.g., the infodemic led by COVID-19 misinformation). Previous studies focus on multi-domain fake news detection, by equally mining and modeling the correlation between domains. However, these multi-domain methods suffer from a seesaw problem: the performance of some domains is often improved at the cost of hurting the performance of other domains, which could lead to an unsatisfying performance in specific domains. To address this issue, we propose a Domain- and Instance-level Transfer Framework for Fake News Detection (DITFEND), which could improve the performance of specific target domains. To transfer coarse-grained domain-level knowledge, we train a general model with data of all domains from the meta-learning perspective. To transfer fine-grained instance-level knowledge and adapt the general model to a target domain, we train a language model on the target domain to evaluate the transferability of each data instance in source domains and re-weigh each instance's contribution. Offline experiments on two datasets demonstrate the effectiveness of DITFEND. Online experiments show that DITFEND brings additional improvements over the base models in a real-world scenario.
Abstract:Conversational recommender systems (CRS) aim to capture user's current intentions and provide recommendations through real-time multi-turn conversational interactions. As a human-machine interactive system, it is essential for CRS to improve the user experience. However, most CRS methods neglect the importance of user experience. In this paper, we propose two key points for CRS to improve the user experience: (1) Speaking like a human, human can speak with different styles according to the current dialogue context. (2) Identifying fine-grained intentions, even for the same utterance, different users have diverse finegrained intentions, which are related to users' inherent preference. Based on the observations, we propose a novel CRS model, coined Customized Conversational Recommender System (CCRS), which customizes CRS model for users from three perspectives. For human-like dialogue services, we propose multi-style dialogue response generator which selects context-aware speaking style for utterance generation. To provide personalized recommendations, we extract user's current fine-grained intentions from dialogue context with the guidance of user's inherent preferences. Finally, to customize the model parameters for each user, we train the model from the meta-learning perspective. Extensive experiments and a series of analyses have shown the superiority of our CCRS on both the recommendation and dialogue services.
Abstract:The wide spread of fake news is increasingly threatening both individuals and society. Great efforts have been made for automatic fake news detection on a single domain (e.g., politics). However, correlations exist commonly across multiple news domains, and thus it is promising to simultaneously detect fake news of multiple domains. Based on our analysis, we pose two challenges in multi-domain fake news detection: 1) domain shift, caused by the discrepancy among domains in terms of words, emotions, styles, etc. 2) domain labeling incompleteness, stemming from the real-world categorization that only outputs one single domain label, regardless of topic diversity of a news piece. In this paper, we propose a Memory-guided Multi-view Multi-domain Fake News Detection Framework (M$^3$FEND) to address these two challenges. We model news pieces from a multi-view perspective, including semantics, emotion, and style. Specifically, we propose a Domain Memory Bank to enrich domain information which could discover potential domain labels based on seen news pieces and model domain characteristics. Then, with enriched domain information as input, a Domain Adapter could adaptively aggregate discriminative information from multiple views for news in various domains. Extensive offline experiments on English and Chinese datasets demonstrate the effectiveness of M$^3$FEND, and online tests verify its superiority in practice. Our code is available at https://github.com/ICTMCG/M3FEND.
Abstract:Pre-training models have shown their power in sequential recommendation. Recently, prompt has been widely explored and verified for tuning in NLP pre-training, which could help to more effectively and efficiently extract useful knowledge from pre-training models for downstream tasks, especially in cold-start scenarios. However, it is challenging to bring prompt-tuning from NLP to recommendation, since the tokens in recommendation (i.e., items) do not have explicit explainable semantics, and the sequence modeling should be personalized. In this work, we first introduces prompt to recommendation and propose a novel Personalized prompt-based recommendation (PPR) framework for cold-start recommendation. Specifically, we build the personalized soft prefix prompt via a prompt generator based on user profiles and enable a sufficient training of prompts via a prompt-oriented contrastive learning with both prompt- and behavior-based augmentations. We conduct extensive evaluations on various tasks. In both few-shot and zero-shot recommendation, PPR models achieve significant improvements over baselines on various metrics in three large-scale open datasets. We also conduct ablation tests and sparsity analysis for a better understanding of PPR. Moreover, We further verify PPR's universality on different pre-training models, and conduct explorations on PPR's other promising downstream tasks including cross-domain recommendation and user profile prediction.