Abstract:Secure aggregation is motivated by federated learning (FL) where a cloud server aims to compute an averaged model (i.e., weights of deep neural networks) of the locally-trained models of numerous clients, while adhering to data security requirements. Hierarchical secure aggregation (HSA) extends this concept to a three-layer network, where clustered users communicate with the server through an intermediate layer of relays. In HSA, beyond conventional server security, relay security is also enforced to ensure that the relays remain oblivious to the users' inputs (an abstraction of the local models in FL). Existing study on HSA assumes that each user is associated with only one relay, limiting opportunities for coding across inter-cluster users to achieve efficient communication and key generation. In this paper, we consider HSA with a cyclic association pattern where each user is connected to $B$ consecutive relays in a wrap-around manner. We propose an efficient aggregation scheme which includes a message design for the inputs inspired by gradient coding-a well-known technique for efficient communication in distributed computing-along with a highly nontrivial security key design. We also derive novel converse bounds on the minimum achievable communication and key rates using information-theoretic arguments.
Abstract:Fluid Antenna System (FAS) unlocks unprecedented flexibility in wireless channel optimization through spatial reconfigurability. However, its practical deployment is hindered by the coupled challenges posed by high-dimensional channel estimation and real-time position optimization. This paper bridges wireless propagation physics with compressed sensing theory to address these challenges through three aspects. First, we establish a group-sparse recovery framework for space-frequency characteristics (SFC) in FAS, formally characterizing leakage-induced sparsity degradation from limited aperture and bandwidth as a structured group-sparsity problem. By deriving dictionary-adapted group restricted isometry property (D-GRIP), we prove tight recovery bounds for a convex $\ell_1/\ell_2$-mixed norm optimization formulation that preserves leakage-aware sparsity patterns. Second, we develop a Descending Correlation Group Orthogonal Matching Pursuit (DC-GOMP) algorithm that systematically relaxes leakage constraints to reduce subcoherence. This approach enables robust FSC recovery with accelerated convergence and superior performance compared to conventional compressive sensing methods like OMP or GOMP. Third, we formulate spatial equalization (SE) as a mixed-integer linear programming (MILP) problem, ensuring optimality through the branch-and-bound method. To achieve real-time implementability while maintaining near-optimal performance, we complement this with a greedy algorithm. Simulation results demonstrate the proposed channel estimation algorithm effectively resolves energy misallocation and enables recovery of weak details, achieving superior recovery accuracy and convergence rate. The SE framework suppresses deep fading phenomena and reduces hardware deployment overhead while maintaining equivalent link reliability.
Abstract:Metamaterial antennas are appealing for next-generation wireless networks due to their simplified hardware and much-reduced size, power, and cost. This paper investigates the holographic multiple-input multiple-output (HMIMO)-aided multi-cell systems with practical per-radio frequency (RF) chain power constraints. With multiple antennas at both base stations (BSs) and users, we design the baseband digital precoder and the tuning response of HMIMO metamaterial elements to maximize the weighted sum user rate. Specifically, under the framework of block coordinate descent (BCD) and weighted minimum mean square error (WMMSE) techniques, we derive the low-complexity closed-form solution for baseband precoder without requiring bisection search and matrix inversion. Then, for the design of HMIMO metamaterial elements under binary tuning constraints, we first propose a low-complexity suboptimal algorithm with closed-form solutions by exploiting the hidden convexity (HC) in the quadratic problem and then further propose an accelerated sphere decoding (SD)-based algorithm which yields global optimal solution in the iteration. For HMIMO metamaterial element design under the Lorentzian-constrained phase model, we propose a maximization-minorization (MM) algorithm with closed-form solutions at each iteration step. Furthermore, in a simplified multiple-input single-output (MISO) scenario, we derive the scaling law of downlink single-to-noise (SNR) for HMIMO with binary and Lorentzian tuning constraints and theoretically compare it with conventional fully digital/hybrid arrays. Simulation results demonstrate the effectiveness of our algorithms compared to benchmarks and the benefits of HMIMO compared to conventional arrays.
Abstract:This work introduces Semantically Masked VQ-GAN (SQ-GAN), a novel approach integrating generative models to optimize image compression for semantic/task-oriented communications. SQ-GAN employs off-the-shelf semantic semantic segmentation and a new specifically developed semantic-conditioned adaptive mask module (SAMM) to selectively encode semantically significant features of the images. SQ-GAN outperforms state-of-the-art image compression schemes such as JPEG2000 and BPG across multiple metrics, including perceptual quality and semantic segmentation accuracy on the post-decoding reconstructed image, at extreme low compression rates expressed in bits per pixel.
Abstract:Space-fed large antenna arrays offer superior efficiency, simplicity, and reductions in size, weight, power, and cost (SWaP-C) compared to constrained-feed systems. Historically, horn antennas have been used for space feeding, but they suffer from limitations such as bulky designs, low aperture efficiency ($\approx 50\%$), and restricted degrees of freedom at the continuous aperture. In contrast, planar patch arrays achieve significantly higher aperture efficiency ($>90\%$) due to their more uniform aperture distribution, reduced weight, and increased degrees of freedom from the discretized aperture. Building on these advantages, we proposed an array-fed Reflective Intelligent Surface (RIS) system, where an active multi-antenna feeder (AMAF) optimizes power transfer by aligning with the principal eigenmode of the AMAF-RIS propagation matrix $\mathbf{T}$. While our previous studies relied on the Friis transmission formula for system modeling, we now validate this approach through full-wave simulations in CST Microwave Studio. By comparing the Friis-based matrix, $\mathbf{T}_{\rm Friis}$, with the full-wave solution, $\mathbf{T}_{\rm full$.$wave}$, we validate the relevance of the Friis-based modeling for top-level system design. Our findings confirm the feasibility of the proposed AMAF-RIS architecture for next-generation communication systems.
Abstract:Flat-top beam designs are essential for uniform power distribution over a wide angular sector for applications such as 5G/6G networks, satellite communications, radar systems, etc. Low sidelobe levels with steep transitions allow negligible cross sector illumination. Active array designs requiring amplitude taper suffer from poor power amplifier utilization. Phase only designs, e.g., Zadoff-Chu or generalized step chirp polyphase sequence methods, often require large active antenna arrays which in turns increases the hardware complexity and reduces the energy efficiency. In our recently proposed novel array-fed reflective intelligent surface (RIS) architecture, the small ($2 \times 2$) active array has uniform (principal eigenmode) amplitude weighting. We now present a pragmatic flat-top pattern design method for practical array (RIS) sizes, which outperforms current state-of-the-art in terms of design superiority, energy efficiency, and deployment feasibility. This novel design holds promise for advancing sustainable wireless technologies in next-generation communication systems while mitigating the environmental impact of high-energy antenna arrays.
Abstract:Next-generation wireless networks are conceived to provide reliable and high-data-rate communication services for diverse scenarios, such as vehicle-to-vehicle, unmanned aerial vehicles, and satellite networks. The severe Doppler spreads in the underlying time-varying channels induce destructive inter-carrier interference (ICI) in the extensively adopted orthogonal frequency division multiplexing (OFDM) waveform, leading to severe performance degradation. This calls for a new air interface design that can accommodate the severe delay-Doppler spreads in highly dynamic channels while possessing sufficient flexibility to cater to various applications. This article provides a comprehensive overview of a promising chirp-based waveform named affine frequency division multiplexing (AFDM). It is featured with two tunable parameters and achieves optimal diversity order in doubly dispersive channels (DDC). We study the fundamental principle of AFDM, illustrating its intrinsic suitability for DDC. Based on that, several potential applications of AFDM are explored. Furthermore, the major challenges and the corresponding solutions of AFDM are presented, followed by several future research directions. Finally, we draw some instructive conclusions about AFDM, hoping to provide useful inspiration for its development.
Abstract:This paper considers a joint scattering environment sensing and data recovery problem in an uplink integrated sensing and communication (ISAC) system. To facilitate joint scatterers localization and multi-user (MU) channel estimation, we introduce a three-dimensional (3D) location-domain sparse channel model to capture the joint sparsity of the MU channel (i.e., different user channels share partially overlapped scatterers). Then the joint problem is formulated as a bilinear structured sparse recovery problem with a dynamic position grid and imperfect parameters (such as time offset and user position errors). We propose an expectation maximization based turbo bilinear subspace variational Bayesian inference (EM-Turbo-BiSVBI) algorithm to solve the problem effectively, where the E-step performs Bayesian estimation of the the location-domain sparse MU channel by exploiting the joint sparsity, and the M-step refines the dynamic position grid and learns the imperfect factors via gradient update. Two methods are introduced to greatly reduce the complexity with almost no sacrifice on the performance and convergence speed: 1) a subspace constrained bilinear variational Bayesian inference (VBI) method is proposed to avoid any high-dimensional matrix inverse; 2) the multiple signal classification (MUSIC) and subspace constrained VBI methods are combined to obtain a coarse estimation result to reduce the search range. Simulations verify the advantages of the proposed scheme over baseline schemes.
Abstract:Integrated Sensing and Communications (ISAC) is expected to play a pivotal role in future 6G networks. To maximize time-frequency resource utilization, 6G ISAC systems must exploit data payload signals, that are inherently random, for both communication and sensing tasks. This paper provides a comprehensive analysis of the sensing performance of such communication-centric ISAC signals, with a focus on modulation and pulse shaping design to reshape the statistical properties of their auto-correlation functions (ACFs), thereby improving the target ranging performance. We derive a closed-form expression for the expectation of the squared ACF of random ISAC signals, considering arbitrary modulation bases and constellation mappings within the Nyquist pulse shaping framework. The structure is metaphorically described as an ``iceberg hidden in the sea", where the ``iceberg'' represents the squared mean of the ACF of random ISAC signals, that is determined by the pulse shaping filter, and the ``sea level'' characterizes the corresponding variance, caused by the randomness of the data payload. Our analysis shows that, for QAM/PSK constellations with Nyquist pulse shaping, Orthogonal Frequency Division Multiplexing (OFDM) achieves the lowest ranging sidelobe level across all lags. Building on these insights, we propose a novel Nyquist pulse shaping design to enhance the sensing performance of random ISAC signals. Numerical results validate our theoretical findings, showing that the proposed pulse shaping significantly reduces ranging sidelobes compared to conventional root-raised cosine (RRC) pulse shaping, thereby improving the ranging performance.
Abstract:This work considers a spatial non-stationary channel tracking problem in broadband extremely large-scale multiple-input-multiple-output (XL-MIMO) systems. In the case of spatial non-stationary, each scatterer has a certain visibility region (VR) over antennas and power change may occur among visible antennas. Concentrating on the temporal correlation of XL-MIMO channels, we design a three-layer Markov prior model and hierarchical two-dimensional (2D) Markov model to exploit the dynamic sparsity of sparse channel vectors and VRs, respectively. Then, we formulate the channel tracking problem as a bilinear measurement process, and a novel dynamic alternating maximum a posteriori (DA-MAP) framework is developed to solve the problem. The DA-MAP contains four basic modules: channel estimation module, VR detection module, grid update module, and temporal correlated module. Specifically, the first module is an inverse-free variational Bayesian inference (IF-VBI) estimator that avoids computational intensive matrix inverse each iteration; the second module is a turbo compressive sensing (Turbo-CS) algorithm that only needs small-scale matrix operations in a parallel fashion; the third module refines the polar-delay domain grid; and the fourth module can process the temporal prior information to ensure high-efficiency channel tracking. Simulations show that the proposed method can achieve a significant channel tracking performance while achieving low computational overhead.