Abstract:Space-fed large antenna arrays offer superior efficiency, simplicity, and reductions in size, weight, power, and cost (SWaP-C) compared to constrained-feed systems. Historically, horn antennas have been used for space feeding, but they suffer from limitations such as bulky designs, low aperture efficiency ($\approx 50\%$), and restricted degrees of freedom at the continuous aperture. In contrast, planar patch arrays achieve significantly higher aperture efficiency ($>90\%$) due to their more uniform aperture distribution, reduced weight, and increased degrees of freedom from the discretized aperture. Building on these advantages, we proposed an array-fed Reflective Intelligent Surface (RIS) system, where an active multi-antenna feeder (AMAF) optimizes power transfer by aligning with the principal eigenmode of the AMAF-RIS propagation matrix $\mathbf{T}$. While our previous studies relied on the Friis transmission formula for system modeling, we now validate this approach through full-wave simulations in CST Microwave Studio. By comparing the Friis-based matrix, $\mathbf{T}_{\rm Friis}$, with the full-wave solution, $\mathbf{T}_{\rm full$.$wave}$, we validate the relevance of the Friis-based modeling for top-level system design. Our findings confirm the feasibility of the proposed AMAF-RIS architecture for next-generation communication systems.
Abstract:This work introduces Semantically Masked VQ-GAN (SQ-GAN), a novel approach integrating generative models to optimize image compression for semantic/task-oriented communications. SQ-GAN employs off-the-shelf semantic semantic segmentation and a new specifically developed semantic-conditioned adaptive mask module (SAMM) to selectively encode semantically significant features of the images. SQ-GAN outperforms state-of-the-art image compression schemes such as JPEG2000 and BPG across multiple metrics, including perceptual quality and semantic segmentation accuracy on the post-decoding reconstructed image, at extreme low compression rates expressed in bits per pixel.
Abstract:Flat-top beam designs are essential for uniform power distribution over a wide angular sector for applications such as 5G/6G networks, satellite communications, radar systems, etc. Low sidelobe levels with steep transitions allow negligible cross sector illumination. Active array designs requiring amplitude taper suffer from poor power amplifier utilization. Phase only designs, e.g., Zadoff-Chu or generalized step chirp polyphase sequence methods, often require large active antenna arrays which in turns increases the hardware complexity and reduces the energy efficiency. In our recently proposed novel array-fed reflective intelligent surface (RIS) architecture, the small ($2 \times 2$) active array has uniform (principal eigenmode) amplitude weighting. We now present a pragmatic flat-top pattern design method for practical array (RIS) sizes, which outperforms current state-of-the-art in terms of design superiority, energy efficiency, and deployment feasibility. This novel design holds promise for advancing sustainable wireless technologies in next-generation communication systems while mitigating the environmental impact of high-energy antenna arrays.
Abstract:Next-generation wireless networks are conceived to provide reliable and high-data-rate communication services for diverse scenarios, such as vehicle-to-vehicle, unmanned aerial vehicles, and satellite networks. The severe Doppler spreads in the underlying time-varying channels induce destructive inter-carrier interference (ICI) in the extensively adopted orthogonal frequency division multiplexing (OFDM) waveform, leading to severe performance degradation. This calls for a new air interface design that can accommodate the severe delay-Doppler spreads in highly dynamic channels while possessing sufficient flexibility to cater to various applications. This article provides a comprehensive overview of a promising chirp-based waveform named affine frequency division multiplexing (AFDM). It is featured with two tunable parameters and achieves optimal diversity order in doubly dispersive channels (DDC). We study the fundamental principle of AFDM, illustrating its intrinsic suitability for DDC. Based on that, several potential applications of AFDM are explored. Furthermore, the major challenges and the corresponding solutions of AFDM are presented, followed by several future research directions. Finally, we draw some instructive conclusions about AFDM, hoping to provide useful inspiration for its development.
Abstract:This paper considers a joint scattering environment sensing and data recovery problem in an uplink integrated sensing and communication (ISAC) system. To facilitate joint scatterers localization and multi-user (MU) channel estimation, we introduce a three-dimensional (3D) location-domain sparse channel model to capture the joint sparsity of the MU channel (i.e., different user channels share partially overlapped scatterers). Then the joint problem is formulated as a bilinear structured sparse recovery problem with a dynamic position grid and imperfect parameters (such as time offset and user position errors). We propose an expectation maximization based turbo bilinear subspace variational Bayesian inference (EM-Turbo-BiSVBI) algorithm to solve the problem effectively, where the E-step performs Bayesian estimation of the the location-domain sparse MU channel by exploiting the joint sparsity, and the M-step refines the dynamic position grid and learns the imperfect factors via gradient update. Two methods are introduced to greatly reduce the complexity with almost no sacrifice on the performance and convergence speed: 1) a subspace constrained bilinear variational Bayesian inference (VBI) method is proposed to avoid any high-dimensional matrix inverse; 2) the multiple signal classification (MUSIC) and subspace constrained VBI methods are combined to obtain a coarse estimation result to reduce the search range. Simulations verify the advantages of the proposed scheme over baseline schemes.
Abstract:Integrated Sensing and Communications (ISAC) is expected to play a pivotal role in future 6G networks. To maximize time-frequency resource utilization, 6G ISAC systems must exploit data payload signals, that are inherently random, for both communication and sensing tasks. This paper provides a comprehensive analysis of the sensing performance of such communication-centric ISAC signals, with a focus on modulation and pulse shaping design to reshape the statistical properties of their auto-correlation functions (ACFs), thereby improving the target ranging performance. We derive a closed-form expression for the expectation of the squared ACF of random ISAC signals, considering arbitrary modulation bases and constellation mappings within the Nyquist pulse shaping framework. The structure is metaphorically described as an ``iceberg hidden in the sea", where the ``iceberg'' represents the squared mean of the ACF of random ISAC signals, that is determined by the pulse shaping filter, and the ``sea level'' characterizes the corresponding variance, caused by the randomness of the data payload. Our analysis shows that, for QAM/PSK constellations with Nyquist pulse shaping, Orthogonal Frequency Division Multiplexing (OFDM) achieves the lowest ranging sidelobe level across all lags. Building on these insights, we propose a novel Nyquist pulse shaping design to enhance the sensing performance of random ISAC signals. Numerical results validate our theoretical findings, showing that the proposed pulse shaping significantly reduces ranging sidelobes compared to conventional root-raised cosine (RRC) pulse shaping, thereby improving the ranging performance.
Abstract:This work considers a spatial non-stationary channel tracking problem in broadband extremely large-scale multiple-input-multiple-output (XL-MIMO) systems. In the case of spatial non-stationary, each scatterer has a certain visibility region (VR) over antennas and power change may occur among visible antennas. Concentrating on the temporal correlation of XL-MIMO channels, we design a three-layer Markov prior model and hierarchical two-dimensional (2D) Markov model to exploit the dynamic sparsity of sparse channel vectors and VRs, respectively. Then, we formulate the channel tracking problem as a bilinear measurement process, and a novel dynamic alternating maximum a posteriori (DA-MAP) framework is developed to solve the problem. The DA-MAP contains four basic modules: channel estimation module, VR detection module, grid update module, and temporal correlated module. Specifically, the first module is an inverse-free variational Bayesian inference (IF-VBI) estimator that avoids computational intensive matrix inverse each iteration; the second module is a turbo compressive sensing (Turbo-CS) algorithm that only needs small-scale matrix operations in a parallel fashion; the third module refines the polar-delay domain grid; and the fourth module can process the temporal prior information to ensure high-efficiency channel tracking. Simulations show that the proposed method can achieve a significant channel tracking performance while achieving low computational overhead.
Abstract:Devices in a device-to-device (D2D) network operating in sub-THz frequencies require knowledge of the spatial channel that connects them to their peers. Acquiring such high dimensional channel state information entails large overhead, which drastically increases with the number of network devices. In this paper, we propose an accelerated method to achieve network-wide beam alignment in an efficient way. To this aim, we consider compressed sensing estimation enabled by a novel design of pilot sequences. Our designed pilots have constant envelope to alleviate hardware requirements at the transmitters, while they exhibit a "comb-like"' spectrum that flexibly allocates energy only on certain frequencies. This design enables multiple devices to transmit thier pilots concurrently while remaining orthogonal in frequency, achieving simultaneous alignment of multiple devices. Furthermore, we present a sequential partitioning strategy into transmitters and receivers that results in logarithmic scaling of the overhead with the number of devices, as opposed to the conventional linear scaling. Finally, we show via accurate modeling of the indoor propagation environment and ray tracing simulations that the resulting sub-THz channels after successful beamforming are approximately frequency flat, therefore suitable for efficient single carrier transmission without equalization. We compare our results against an "802.11ad inspired" baseline and show that our method is capable to greatly reduce the number of pilots required to achieve network-wide alignment.
Abstract:Evaluating datasets in data marketplaces, where the buyer aim to purchase valuable data, is a critical challenge. In this paper, we introduce an innovative task-agnostic data valuation method called PriArTa which is an approach for computing the distance between the distribution of the buyer's existing dataset and the seller's dataset, allowing the buyer to determine how effectively the new data can enhance its dataset. PriArTa is communication-efficient, enabling the buyer to evaluate datasets without needing access to the entire dataset from each seller. Instead, the buyer requests that sellers perform specific preprocessing on their data and then send back the results. Using this information and a scoring metric, the buyer can evaluate the dataset. The preprocessing is designed to allow the buyer to compute the score while preserving the privacy of each seller's dataset, mitigating the risk of information leakage before the purchase. A key feature of PriArTa is its robustness to common data transformations, ensuring consistent value assessment and reducing the risk of purchasing redundant data. The effectiveness of PriArTa is demonstrated through experiments on real-world image datasets, showing its ability to perform privacy-preserving, augmentation-robust data valuation in data marketplaces.
Abstract:In this work, we consider the target detection problem in a multistatic integrated sensing and communication (ISAC) scenario characterized by the cell-free MIMO communication network deployment, where multiple radio units (RUs) in the network cooperate with each other for the sensing task. By exploiting the angle resolution from multiple arrays deployed in the network and the delay resolution from the communication signals, i.e., orthogonal frequency division multiplexing (OFDM) signals, we formulate a cooperative sensing problem with coherent data fusion of multiple RUs' observations and propose a sparse Bayesian learning (SBL)-based method, where the global coordinates of target locations are directly detected. Intensive numerical results indicate promising target detection performance of the proposed SBL-based method. Additionally, a theoretical analysis of the considered cooperative multistatic sensing task is provided using the pairwise error probability (PEP) analysis, which can be used to provide design insights, e.g., illumination and beam patterns, for the considered problem.