Gauss-Olbers Center, c/o University of Bremen, Dept. of Communications Engineering
Abstract:As early as 1949, Weaver defined communication in a very broad sense to include all procedures by which one mind or technical system can influence another, thus establishing the idea of semantic communication. With the recent success of machine learning in expert assistance systems where sensed information is wirelessly provided to a human to assist task execution, the need to design effective and efficient communications has become increasingly apparent. In particular, semantic communication aims to convey the meaning behind the sensed information relevant for Human Decision-Making (HDM). Regarding the interplay between semantic communication and HDM, many questions remain, such as how to model the entire end-to-end sensing-decision-making process, how to design semantic communication for the HDM and which information should be provided to the HDM. To address these questions, we propose to integrate semantic communication and HDM into one probabilistic end-to-end sensing-decision framework that bridges communications and psychology. In our interdisciplinary framework, we model the human through a HDM process, allowing us to explore how feature extraction from semantic communication can best support human decision-making. In this sense, our study provides new insights for the design/interaction of semantic communication with models of HDM. Our initial analysis shows how semantic communication can balance the level of detail with human cognitive capabilities while demanding less bandwidth, power, and latency.
Abstract:In this paper, we explore a multi-task semantic communication (SemCom) system for distributed sources, extending the existing focus on collaborative single-task execution. We build on the cooperative multi-task processing introduced in [1], which divides the encoder into a common unit (CU) and multiple specific units (SUs). While earlier studies in multi-task SemCom focused on full observation settings, our research explores a more realistic case where only distributed partial observations are available, such as in a production line monitored by multiple sensing nodes. To address this, we propose an SemCom system that supports multi-task processing through cooperation on the transmitter side via split structure and collaboration on the receiver side. We have used an information-theoretic perspective with variational approximations for our end-to-end data-driven approach. Simulation results demonstrate that the proposed cooperative and collaborative multi-task (CCMT) SemCom system significantly improves task execution accuracy, particularly in complex datasets, if the noise introduced from the communication channel is not limiting the task performance too much. Our findings contribute to a more general SemCom framework capable of handling distributed sources and multiple tasks simultaneously, advancing the applicability of SemCom systems in real-world scenarios.
Abstract:This paper investigates federated learning (FL) in a multi-hop communication setup, such as in constellations with inter-satellite links. In this setup, part of the FL clients are responsible for forwarding other client's results to the parameter server. Instead of using conventional routing, the communication efficiency can be improved significantly by using in-network model aggregation at each intermediate hop, known as incremental aggregation (IA). Prior works [1] have indicated diminishing gains for IA under gradient sparsification. Here we study this issue and propose several novel correlated sparsification methods for IA. Numerical results show that, for some of these algorithms, the full potential of IA is still available under sparsification without impairing convergence. We demonstrate a 15x improvement in communication efficiency over conventional routing and a 11x improvement over state-of-the-art (SoA) sparse IA.
Abstract:The rapid growth of non-terrestrial communication necessitates its integration with existing terrestrial networks, as highlighted in 3GPP Releases 16 and 17. This paper analyses the concept of functional splits in 3D-Networks. To manage this complex structure effectively, the adoption of a Radio Access Network (RAN) architecture with Functional Split (FS) offers advantages in flexibility, scalability, and cost-efficiency. RAN achieves this by disaggregating functionalities into three separate units. Analogous to the terrestrial network approach, 3GPP is extending this concept to non-terrestrial platforms as well. This work presents a general analysis of the requested Fronthaul (FH) data rate on feeder link between a non-terrestrial platform and the ground-station. Each split option is a trade-of between FH data rate and the respected complexity. Since flying nodes face more limitations regarding power consumption and complexity on board in comparison to terrestrial ones, we are investigating the split options between lower and higher physical layer.
Abstract:This paper presents an approach for instantaneous bandwidth estimation from level-crossing samples using a long short-term memory (LSTM) encoder-decoder architecture. Level-crossing sampling is a nonuniform sampling technique that is particularly useful for energy-efficient acquisition of signals with sparse spectra. Especially in combination with fully analog wireless sensor nodes, level-crossing sampling offers a viable alternative to traditional sampling methods. However, due to the nonuniform distribution of samples, reconstructing the original signal is a challenging task. One promising reconstruction approach is time-warping, where the local signal spectrum is taken into account. However, this requires an accurate estimate of the instantaneous bandwidth of the signal. In this paper, we show that applying neural networks (NNs) to the problem of estimating instantaneous bandwidth from level-crossing samples can improve the overall reconstruction accuracy. We conduct a comprehensive numerical analysis of the proposed approach and compare it to an intensity-based bandwidth estimation method from literature.
Abstract:In this paper, we have expanded the current status of semantic communication limited to processing one task to a more general system that can handle multiple tasks concurrently. In pursuit of this, we first introduced our definition of the "semantic source", enabling the interpretation of multiple semantics based on a single observation. A semantic encoder design is then introduced, featuring the division of the encoder into a common unit and multiple specific units enabling cooperative multi-task processing. Simulation results demonstrate the effectiveness of the proposed semantic source and the system design. Our approach employs information maximization (infomax) and end-to-end design principles.
Abstract:Low Earth Orbit (LEO) satellite-to-handheld connections herald a new era in satellite communications. Space-Division Multiple Access (SDMA) precoding is a method that mitigates interference among satellite beams, boosting spectral efficiency. While optimal SDMA precoding solutions have been proposed for ideal channel knowledge in various scenarios, addressing robust precoding with imperfect channel information has primarily been limited to simplified models. However, these models might not capture the complexity of LEO satellite applications. We use the Soft Actor-Critic (SAC) deep Reinforcement Learning (RL) method to learn robust precoding strategies without the need for explicit insights into the system conditions and imperfections. Our results show flexibility to adapt to arbitrary system configurations while performing strongly in terms of achievable rate and robustness to disruptive influences compared to analytical benchmark precoders.
Abstract:Mega-constellations of small satellites have evolved into a source of massive amount of valuable data. To manage this data efficiently, on-board federated learning (FL) enables satellites to train a machine learning (ML) model collaboratively without having to share the raw data. This paper introduces a scheme for scheduling on-board FL for constellations connected with intra-orbit inter-satellite links. The proposed scheme utilizes the predictable visibility pattern between satellites and ground station (GS), both at the individual satellite level and cumulatively within the entire orbit, to mitigate intermittent connectivity and best use of available time. To this end, two distinct schedulers are employed: one for coordinating the FL procedures among orbits, and the other for controlling those within each orbit. These two schedulers cooperatively determine the appropriate time to perform global updates in GS and then allocate suitable duration to satellites within each orbit for local training, proportional to usable time until next global update. This scheme leads to improved test accuracy within a shorter time.
Abstract:Motivated by the recent success of Machine Learning tools in wireless communications, the idea of semantic communication by Weaver from 1949 has gained attention. It breaks with Shannon's classic design paradigm by aiming to transmit the meaning, i.e., semantics, of a message instead of its exact version, allowing for information rate savings. In this work, we apply the Stochastic Policy Gradient (SPG) to design a semantic communication system by reinforcement learning, not requiring a known or differentiable channel model - a crucial step towards deployment in practice. Further, we motivate the use of SPG for both classic and semantic communication from the maximization of the mutual information between received and target variables. Numerical results show that our approach achieves comparable performance to a model-aware approach based on the reparametrization trick, albeit with a decreased convergence rate.
Abstract:With increasing complexity of modern communication systems, machine learning algorithms have become a focal point of research. However, performance demands have tightened in parallel to complexity. For some of the key applications targeted by future wireless, such as the medical field, strict and reliable performance guarantees are essential, but vanilla machine learning methods have been shown to struggle with these types of requirements. Therefore, the question is raised whether these methods can be extended to better deal with the demands imposed by such applications. In this paper, we look at a combinatorial resource allocation challenge with rare, significant events which must be handled properly. We propose to treat this as a multi-task learning problem, select two methods from this domain, Elastic Weight Consolidation and Gradient Episodic Memory, and integrate them into a vanilla actor-critic scheduler. We compare their performance in dealing with Black Swan Events with the state-of-the-art of augmenting the training data distribution and report that the multi-task approach proves highly effective.