Abstract:This paper investigates federated learning (FL) in a multi-hop communication setup, such as in constellations with inter-satellite links. In this setup, part of the FL clients are responsible for forwarding other client's results to the parameter server. Instead of using conventional routing, the communication efficiency can be improved significantly by using in-network model aggregation at each intermediate hop, known as incremental aggregation (IA). Prior works [1] have indicated diminishing gains for IA under gradient sparsification. Here we study this issue and propose several novel correlated sparsification methods for IA. Numerical results show that, for some of these algorithms, the full potential of IA is still available under sparsification without impairing convergence. We demonstrate a 15x improvement in communication efficiency over conventional routing and a 11x improvement over state-of-the-art (SoA) sparse IA.
Abstract:Accurate specification of standard occupational classification (SOC) code is critical to the success of many U.S. work visa applications. Determination of correct SOC code relies on careful study of job requirements and comparison to definitions given by the U.S. Bureau of Labor Statistics, which is often a tedious activity. In this paper, we apply methods from natural language processing (NLP) to computationally determine SOC code based on job description. We implement and empirically evaluate a broad variety of predictive models with respect to quality of prediction and training time, and identify models best suited for this task.
Abstract:In this paper, we consider the problem of organizing supporting documents vital to U.S. work visa petitions, as well as responding to Requests For Evidence (RFE) issued by the U.S.~Citizenship and Immigration Services (USCIS). Typically, both processes require a significant amount of repetitive manual effort. To reduce the burden of mechanical work, we apply machine learning methods to automate these processes, with humans in the loop to review and edit output for submission. In particular, we use an ensemble of image and text classifiers to categorize supporting documents. We also use a text classifier to automatically identify the types of evidence being requested in an RFE, and used the identified types in conjunction with response templates and extracted fields to assemble draft responses. Empirical results suggest that our approach achieves considerable accuracy while significantly reducing processing time.
Abstract:The recent proliferation of publicly available graph-structured data has sparked an interest in machine learning algorithms for graph data. Since most traditional machine learning algorithms assume data to be tabular, embedding algorithms for mapping graph data to real-valued vector spaces has become an active area of research. Existing graph embedding approaches are based purely on structural information and ignore any semantic information from the underlying domain. In this paper, we demonstrate that semantic information can play a useful role in computing graph embeddings. Specifically, we present a framework for devising embedding strategies aware of domain-specific interpretations of graph nodes and edges, and use knowledge of downstream machine learning tasks to identify relevant graph substructures. Using two real-life domains, we show that our framework yields embeddings that are simple to implement and yet achieve equal or greater accuracy in machine learning tasks compared to domain independent approaches.