Accurate specification of standard occupational classification (SOC) code is critical to the success of many U.S. work visa applications. Determination of correct SOC code relies on careful study of job requirements and comparison to definitions given by the U.S. Bureau of Labor Statistics, which is often a tedious activity. In this paper, we apply methods from natural language processing (NLP) to computationally determine SOC code based on job description. We implement and empirically evaluate a broad variety of predictive models with respect to quality of prediction and training time, and identify models best suited for this task.