Abstract:Causal artificial intelligence aims to enhance explainability, trustworthiness, and robustness in AI by leveraging structural causal models (SCMs). In this pursuit, recent advances formalize network sheaves and cosheaves of causal knowledge. Pushing in the same direction, we tackle the learning of consistent causal abstraction network (CAN), a sheaf-theoretic framework where (i) SCMs are Gaussian, (ii) restriction maps are transposes of constructive linear causal abstractions (CAs) adhering to the semantic embedding principle, and (iii) edge stalks correspond--up to permutation--to the node stalks of more detailed SCMs. Our problem formulation separates into edge-specific local Riemannian problems and avoids nonconvex objectives. We propose an efficient search procedure, solving the local problems with SPECTRAL, our iterative method with closed-form updates and suitable for positive definite and semidefinite covariance matrices. Experiments on synthetic data show competitive performance in the CA learning task, and successful recovery of diverse CAN structures.
Abstract:Goal-oriented communications offer an attractive alternative to the Shannon-based communication paradigm, where the data is never reconstructed at the Receiver (RX) side. Rather, focusing on the case of edge inference, the Transmitter (TX) and the RX cooperate to exchange features of the input data that will be used to predict an unseen attribute of them, leveraging information from collected data sets. This chapter demonstrates that the wireless channel can be used to perform computations over the data, when equipped with programmable metasurfaces. The end-to-end system of the TX, RX, and MS-based channel is treated as a single deep neural network which is trained through backpropagation to perform inference on unseen data. Using Stacked Intelligent Metasurfaces (SIM), it is shown that this Metasurfaces-Integrated Neural Network (MINN) can achieve performance comparable to fully digital neural networks under various system parameters and data sets. By offloading computations onto the channel itself, important benefits may be achieved in terms of energy consumption, arising from reduced computations at the transceivers and smaller transmission power required for successful inference.




Abstract:Deep joint source-channel coding (DeepJSCC) has emerged as a powerful paradigm for end-to-end semantic communications, jointly learning to compress and protect task-relevant features over noisy channels. However, existing DeepJSCC schemes assume a shared latent space at transmitter (TX) and receiver (RX) - an assumption that fails in multi-vendor deployments where encoders and decoders cannot be co-trained. This mismatch introduces "semantic noise", degrading reconstruction quality and downstream task performance. In this paper, we systematize and evaluate methods for semantic channel equalization for DeepJSCC, introducing an additional processing stage that aligns heterogeneous latent spaces under both physical and semantic impairments. We investigate three classes of aligners: (i) linear maps, which admit closed-form solutions; (ii) lightweight neural networks, offering greater expressiveness; and (iii) a Parseval-frame equalizer, which operates in zero-shot mode without the need for training. Through extensive experiments on image reconstruction over AWGN and fading channels, we quantify trade-offs among complexity, data efficiency, and fidelity, providing guidelines for deploying DeepJSCC in heterogeneous AI-native wireless networks.




Abstract:This paper proposes a novel communication-efficient Split Learning (SL) framework, named Attention-based Double Compression (ADC), which reduces the communication overhead required for transmitting intermediate Vision Transformers activations during the SL training process. ADC incorporates two parallel compression strategies. The first one merges samples' activations that are similar, based on the average attention score calculated in the last client layer; this strategy is class-agnostic, meaning that it can also merge samples having different classes, without losing generalization ability nor decreasing final results. The second strategy follows the first and discards the least meaningful tokens, further reducing the communication cost. Combining these strategies not only allows for sending less during the forward pass, but also the gradients are naturally compressed, allowing the whole model to be trained without additional tuning or approximations of the gradients. Simulation results demonstrate that Attention-based Double Compression outperforms state-of-the-art SL frameworks by significantly reducing communication overheads while maintaining high accuracy.
Abstract:Semantic communications focus on prioritizing the understanding of the meaning behind transmitted data and ensuring the successful completion of tasks that motivate the exchange of information. However, when devices rely on different languages, logic, or internal representations, semantic mismatches may occur, potentially hindering mutual understanding. This paper introduces a novel approach to addressing latent space misalignment in semantic communications, exploiting multiple-input multiple-output (MIMO) communications. Specifically, our method learns a MIMO precoder/decoder pair that jointly performs latent space compression and semantic channel equalization, mitigating both semantic mismatches and physical channel impairments. We explore two solutions: (i) a linear model, optimized by solving a biconvex optimization problem via the alternating direction method of multipliers (ADMM); (ii) a neural network-based model, which learns semantic MIMO precoder/decoder under transmission power budget and complexity constraints. Numerical results demonstrate the effectiveness of the proposed approach in a goal-oriented semantic communication scenario, illustrating the main trade-offs between accuracy, communication burden, and complexity of the solutions.
Abstract:Semantic communication systems introduce a new paradigm in wireless communications, focusing on transmitting the intended meaning rather than ensuring strict bit-level accuracy. These systems often rely on Deep Neural Networks (DNNs) to learn and encode meaning directly from data, enabling more efficient communication. However, in multi-user settings where interacting agents are trained independently-without shared context or joint optimization-divergent latent representations across AI-native devices can lead to semantic mismatches, impeding mutual understanding even in the absence of traditional transmission errors. In this work, we address semantic mismatch in Multiple-Input Multiple-Output (MIMO) channels by proposing a joint physical and semantic channel equalization framework that leverages the presence of Reconfigurable Intelligent Surfaces (RIS). The semantic equalization is implemented as a sequence of transformations: (i) a pre-equalization stage at the transmitter; (ii) propagation through the RIS-aided channel; and (iii) a post-equalization stage at the receiver. We formulate the problem as a constrained Minimum Mean Squared Error (MMSE) optimization and propose two solutions: (i) a linear semantic equalization chain, and (ii) a non-linear DNN-based semantic equalizer. Both methods are designed to operate under semantic compression in the latent space and adhere to transmit power constraints. Through extensive evaluations, we show that the proposed joint equalization strategies consistently outperform conventional, disjoint approaches to physical and semantic channel equalization across a broad range of scenarios and wireless channel conditions.
Abstract:This paper introduces a novel adaptive framework for processing dynamic flow signals over simplicial complexes, extending classical least-mean-squares (LMS) methods to high-order topological domains. Building on discrete Hodge theory, we present a topological LMS algorithm that efficiently processes streaming signals observed over time-varying edge subsets. We provide a detailed stochastic analysis of the algorithm, deriving its stability conditions, steady-state mean-square-error, and convergence speed, while exploring the impact of edge sampling on performance. We also propose strategies to design optimal edge sampling probabilities, minimizing rate while ensuring desired estimation accuracy. Assuming partial knowledge of the complex structure (e.g., the underlying graph), we introduce an adaptive topology inference method that integrates with the proposed LMS framework. Additionally, we propose a distributed version of the algorithm and analyze its stability and mean-square-error properties. Empirical results on synthetic and real-world traffic data demonstrate that our approach, in both centralized and distributed settings, outperforms graph-based LMS methods by leveraging higher-order topological features.
Abstract:This paper presents an adaptive framework for edge inference based on a dynamically configurable transformer-powered deep joint source channel coding (DJSCC) architecture. Motivated by a practical scenario where a resource constrained edge device engages in goal oriented semantic communication, such as selectively transmitting essential features for object detection to an edge server, our approach enables efficient task aware data transmission under varying bandwidth and channel conditions. To achieve this, input data is tokenized into compact high level semantic representations, refined by a transformer, and transmitted over noisy wireless channels. As part of the DJSCC pipeline, we employ a semantic token selection mechanism that adaptively compresses informative features into a user specified number of tokens per sample. These tokens are then further compressed through the JSCC module, enabling a flexible token communication strategy that adjusts both the number of transmitted tokens and their embedding dimensions. We incorporate a resource allocation algorithm based on Lyapunov stochastic optimization to enhance robustness under dynamic network conditions, effectively balancing compression efficiency and task performance. Experimental results demonstrate that our system consistently outperforms existing baselines, highlighting its potential as a strong foundation for AI native semantic communication in edge intelligence applications.
Abstract:In the Edge Inference (EI) paradigm, where a Deep Neural Network (DNN) is split across the transceivers to wirelessly communicate goal-defined features in solving a computational task, the wireless medium has been commonly treated as a source of noise. In this paper, motivated by the emerging technologies of Reconfigurable Intelligent Surfaces (RISs) and Stacked Intelligent Metasurfaces (SIM) that offer programmable propagation of wireless signals, either through controllable reflections or diffractions, we optimize the RIS/SIM-enabled smart wireless environment as a means of over-the-air computing, resembling the operations of DNN layers. We propose a framework of Metasurfaces-Integrated Neural Networks (MINNs) for EI, presenting its modeling, training through a backpropagation variation for fading channels, and deployment aspects. The overall end-to-end DNN architecture is general enough to admit RIS and SIM devices, through controllable reconfiguration before each transmission or fixed configurations after training, while both channel-aware and channel-agnostic transceivers are considered. Our numerical evaluation showcases metasurfaces to be instrumental in performing image classification under link budgets that impede conventional communications or metasurface-free systems. It is demonstrated that our MINN framework can significantly simplify EI requirements, achieving near-optimal performance with $50~$dB lower testing signal-to-noise ratio compared to training, even without transceiver channel knowledge.




Abstract:The aim of this paper is to introduce a novel dictionary learning algorithm for sparse representation of signals defined over combinatorial topological spaces, specifically, regular cell complexes. Leveraging Hodge theory, we embed topology into the dictionary structure via concatenated sub-dictionaries, each as a polynomial of Hodge Laplacians, yielding localized spectral topological filter frames. The learning problem is cast to jointly infer the underlying cell complex and optimize the dictionary coefficients and the sparse signal representation. We efficiently solve the problem via iterative alternating algorithms. Numerical results on both synthetic and real data show the effectiveness of the proposed procedure in jointly learning the sparse representations and the underlying relational structure of topological signals.