Abstract:Cell-free massive multiple-input multiple-output (mMIMO) networks enhance coverage and spectral efficiency (SE) by distributing antennas across access points (APs) with phase coherence between APs. However, the use of cost-efficient local oscillators (LOs) introduces phase noise (PN) that compromises phase coherence, even with centralized processing. Sharing an LO across APs can reduce costs in specific configurations but cause correlated PN between APs, leading to correlated interference that affects centralized combining. This can be improved by exploiting the PN correlation in channel estimation. This paper presents an uplink orthogonal frequency division multiplexing (OFDM) signal model for PN-impaired cell-free mMIMO, addressing gaps in single-carrier signal models. We evaluate mismatches from applying single-carrier methods to OFDM systems, showing how they underestimate the impact of PN and produce over-optimistic achievable SE predictions. Based on our OFDM signal model, we propose two PN-aware channel and common phase error estimators: a distributed estimator for uncorrelated PN with separate LOs and a centralized estimator with shared LOs. We introduce a deep learning-based channel estimator to enhance the performance and reduce the number of iterations of the centralized estimator. The simulation results show that the distributed estimator outperforms mismatched estimators with separate LOs, whereas the centralized estimator enhances distributed estimators with shared LOs.
Abstract:In this paper, we propose a novel decoding method for Quantum Low-Density Parity-Check (QLDPC) codes based on Graph Neural Networks (GNNs). Similar to the Belief Propagation (BP)-based QLDPC decoders, the proposed GNN-based QLDPC decoder exploits the sparse graph structure of QLDPC codes and can be implemented as a message-passing decoding algorithm. We compare the proposed GNN-based decoding algorithm against selected classes of both conventional and neural-enhanced QLDPC decoding algorithms across several QLDPC code designs. The simulation results demonstrate excellent performance of GNN-based decoders along with their low complexity compared to competing methods.
Abstract:We investigate the age of information (AoI) in a scenario where energy-harvesting devices send status updates to a gateway following the slotted ALOHA protocol and receive no feedback. We let the devices adjust the transmission probabilities based on their current battery level. Using a Markovian analysis, we derive analytically the average AoI. We further provide an approximate analysis for accurate and easy-to-compute approximations of both the average AoI and the age-violation probability (AVP), i.e., the probability that the AoI exceeds a given threshold. We also analyze the average throughput. Via numerical results, we investigate two baseline strategies: transmit a new update whenever possible to exploit every opportunity to reduce the AoI, and transmit only when sufficient energy is available to increase the chance of successful decoding. The two strategies are beneficial for low and high update-generation rates, respectively. We show that an optimized policy that balances the two strategies outperforms them significantly in terms of both AoI metrics and throughput. Finally, we show the benefit of decoding multiple packets in a slot using successive interference cancellation and adapting the transmission probability based on both the current battery level and the time elapsed since the last transmission.
Abstract:Secure aggregation (SecAgg) is a commonly-used privacy-enhancing mechanism in federated learning, affording the server access only to the aggregate of model updates while safeguarding the confidentiality of individual updates. Despite widespread claims regarding SecAgg's privacy-preserving capabilities, a formal analysis of its privacy is lacking, making such presumptions unjustified. In this paper, we delve into the privacy implications of SecAgg by treating it as a local differential privacy (LDP) mechanism for each local update. We design a simple attack wherein an adversarial server seeks to discern which update vector a client submitted, out of two possible ones, in a single training round of federated learning under SecAgg. By conducting privacy auditing, we assess the success probability of this attack and quantify the LDP guarantees provided by SecAgg. Our numerical results unveil that, contrary to prevailing claims, SecAgg offers weak privacy against membership inference attacks even in a single training round. Indeed, it is difficult to hide a local update by adding other independent local updates when the updates are of high dimension. Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection, in federated learning.
Abstract:We address the challenge of federated learning on graph-structured data distributed across multiple clients. Specifically, we focus on the prevalent scenario of interconnected subgraphs, where inter-connections between different clients play a critical role. We present a novel framework for this scenario, named FedStruct, that harnesses deep structural dependencies. To uphold privacy, unlike existing methods, FedStruct eliminates the necessity of sharing or generating sensitive node features or embeddings among clients. Instead, it leverages explicit global graph structure information to capture inter-node dependencies. We validate the effectiveness of FedStruct through experimental results conducted on six datasets for semi-supervised node classification, showcasing performance close to the centralized approach across various scenarios, including different data partitioning methods, varying levels of label availability, and number of clients.
Abstract:The use of up to hundreds of antennas in massive multi-user (MU) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) poses a complexity challenge for digital predistortion (DPD) aiming to linearize the nonlinear power amplifiers (PAs). While the complexity for conventional time domain (TD) DPD scales with the number of PAs, frequency domain (FD) DPD has a complexity scaling with the number of user equipments (UEs). In this work, we provide a comprehensive analysis of different state-of-the-art TD and FD-DPD schemes in terms of complexity and linearization performance in both rich scattering and line-of-sight (LOS) channels. We also propose a novel low-complexity FD convolutional neural network (CNN) DPD. The analysis shows that FD-DPD, particularly the proposed FD CNN, is preferable in LOS scenarios with few users, due to the favorable trade-off between complexity and linearization performance. On the other hand, in scenarios with more users or isotropic scattering channels, significant intermodulation distortions among UEs degrade FD-DPD performance, making TD-DPD more suitable.
Abstract:We propose a novel frequency-domain blind equalization scheme for coherent optical communications. The method is shown to achieve similar performance to its recently proposed time-domain counterpart with lower computational complexity, while outperforming the commonly used CMA-based equalizers.
Abstract:Cell-Free massive MIMO networks provide huge power gains and resolve inter-cell interference by coherent processing over a massive number of distributed instead of co-located antennas in access points (APs). Cost-efficient hardware is preferred but imperfect local oscillators in both APs and users introduce multiplicative phase noise (PN), which affects the phase coherence between APs and users even with centralized processing. In this paper, we first formulate the system model of a PN-impaired uplink Cell-Free massive MIMO orthogonal frequency division multiplexing network, and then propose a PN-aware linear minimum mean square error channel estimator and derive a PN-impaired uplink spectral efficiency expression. Numerical results are used to quantify the spectral efficiency gain of the proposed channel estimator over alternative schemes for different receiving combiners.
Abstract:We propose FedGT, a novel framework for identifying malicious clients in federated learning with secure aggregation. Inspired by group testing, the framework leverages overlapping groups of clients to detect the presence of malicious clients in the groups and to identify them via a decoding operation. The identified clients are then removed from the training of the model, which is performed over the remaining clients. FedGT strikes a balance between privacy and security, allowing for improved identification capabilities while still preserving data privacy. Specifically, the server learns the aggregated model of the clients in each group. The effectiveness of FedGT is demonstrated through extensive experiments on the MNIST and CIFAR-10 datasets, showing its ability to identify malicious clients with low misdetection and false alarm probabilities, resulting in high model utility.
Abstract:State-of-the-art high-spectral-efficiency communication systems employ high-order modulation formats coupled with high symbol rates to accommodate the ever-growing demand for data rate-hungry applications. However, such systems are more vulnerable to linear and nonlinear transmission impairments, and it is important to mitigate the performance loss via digital signal processing. In this paper, we propose a novel machine learning approach for blind channel equalization and estimation using the vector quantized (VQ) \ac{VAE} framework. The proposed approach generalizes the applicability of the conventional \ac{VAE}-based equalizer to nonlinear systems employing high-order modulation formats by introducing a codebook component and an associated novel loss function. We evaluate the performance of the proposed method over a linear additive white Gaussian noise channel with intersymbol interference and two nonlinear scenarios. Simulation results show that the proposed method can achieve similar performance as a data aided equalizer using the \acf{MMSE} criterion, and outperforms the blind\ac{CMA} and the \ac{VAE}-based channel equalizer. Furthermore, we show that for the linear channel, the proposed scheme exhibits better convergence properties than the \ac{MMSE}-based, the \ac{CMA}-based, and the \ac{VAE}-based equalizers in terms of both convergence speed and robustness to variations in training batch size and learning rate.