Abstract:Data-Free Knowledge Distillation (DFKD) is an advanced technique that enables knowledge transfer from a teacher model to a student model without relying on original training data. While DFKD methods have achieved success on smaller datasets like CIFAR10 and CIFAR100, they encounter challenges on larger, high-resolution datasets such as ImageNet. A primary issue with previous approaches is their generation of synthetic images at high resolutions (e.g., $224 \times 224$) without leveraging information from real images, often resulting in noisy images that lack essential class-specific features in large datasets. Additionally, the computational cost of generating the extensive data needed for effective knowledge transfer can be prohibitive. In this paper, we introduce MUlti-reSolution data-freE (MUSE) to address these limitations. MUSE generates images at lower resolutions while using Class Activation Maps (CAMs) to ensure that the generated images retain critical, class-specific features. To further enhance model diversity, we propose multi-resolution generation and embedding diversity techniques that strengthen latent space representations, leading to significant performance improvements. Experimental results demonstrate that MUSE achieves state-of-the-art performance across both small- and large-scale datasets, with notable performance gains of up to two digits in nearly all ImageNet and subset experiments. Code is available at https://github.com/tmtuan1307/muse.
Abstract:Machine Unlearning (MU) aims to selectively erase harmful behaviors from models while retaining the overall utility of the model. As a multi-task learning problem, MU involves balancing objectives related to forgetting specific concepts/data and preserving general performance. A naive integration of these forgetting and preserving objectives can lead to gradient conflicts, impeding MU algorithms from reaching optimal solutions. To address the gradient conflict issue, we reformulate MU as a two-player cooperative game, where the two players, namely, the forgetting player and the preservation player, contribute via their gradient proposals to maximize their overall gain. To this end, inspired by the Nash bargaining theory, we derive a closed-form solution to guide the model toward the Pareto front, effectively avoiding the gradient conflicts. Our formulation of MU guarantees an equilibrium solution, where any deviation from the final state would lead to a reduction in the overall objectives for both players, ensuring optimality in each objective. We evaluate our algorithm's effectiveness on a diverse set of tasks across image classification and image generation. Extensive experiments with ResNet, vision-language model CLIP, and text-to-image diffusion models demonstrate that our method outperforms state-of-the-art MU algorithms, achieving superior performance on several benchmarks. For example, in the challenging scenario of sample-wise forgetting, our algorithm approaches the gold standard retrain baseline. Our results also highlight improvements in forgetting precision, preservation of generalization, and robustness against adversarial attacks.
Abstract:With 3D Gaussian Splatting (3DGS) advancing real-time and high-fidelity rendering for novel view synthesis, storage requirements pose challenges for their widespread adoption. Although various compression techniques have been proposed, previous art suffers from a common limitation: for any existing 3DGS, per-scene optimization is needed to achieve compression, making the compression sluggish and slow. To address this issue, we introduce Fast Compression of 3D Gaussian Splatting (FCGS), an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass, which significantly reduces compression time from minutes to seconds. To enhance compression efficiency, we propose a multi-path entropy module that assigns Gaussian attributes to different entropy constraint paths for balance between size and fidelity. We also carefully design both inter- and intra-Gaussian context models to remove redundancies among the unstructured Gaussian blobs. Overall, FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods. Our code is available at: https://github.com/YihangChen-ee/FCGS.
Abstract:Implicit Neural Representations (INRs) have recently advanced the field of deep learning due to their ability to learn continuous representations of signals without the need for large training datasets. Although INR methods have been studied for medical image super-resolution, their adaptability to localized priors in medical images has not been extensively explored. Medical images contain rich anatomical divisions that could provide valuable local prior information to enhance the accuracy and robustness of INRs. In this work, we propose a novel framework, referred to as the Semantically Conditioned INR (SeCo-INR), that conditions an INR using local priors from a medical image, enabling accurate model fitting and interpolation capabilities to achieve super-resolution. Our framework learns a continuous representation of the semantic segmentation features of a medical image and utilizes it to derive the optimal INR for each semantic region of the image. We tested our framework using several medical imaging modalities and achieved higher quantitative scores and more realistic super-resolution outputs compared to state-of-the-art methods.
Abstract:Vision language models (VLMs) have achieved impressive progress in diverse applications, becoming a prevalent research direction. In this paper, we build FIRE, a feedback-refinement dataset, consisting of 1.1M multi-turn conversations that are derived from 27 source datasets, empowering VLMs to spontaneously refine their responses based on user feedback across diverse tasks. To scale up the data collection, FIRE is collected in two components: FIRE-100K and FIRE-1M, where FIRE-100K is generated by GPT-4V, and FIRE-1M is freely generated via models trained on FIRE-100K. Then, we build FIRE-Bench, a benchmark to comprehensively evaluate the feedback-refining capability of VLMs, which contains 11K feedback-refinement conversations as the test data, two evaluation settings, and a model to provide feedback for VLMs. We develop the FIRE-LLaVA model by fine-tuning LLaVA on FIRE-100K and FIRE-1M, which shows remarkable feedback-refining capability on FIRE-Bench and outperforms untrained VLMs by 50%, making more efficient user-agent interactions and underscoring the significance of the FIRE dataset.
Abstract:In recent years, Neural Radiance Field (NeRF) has demonstrated remarkable capabilities in representing 3D scenes. To expedite the rendering process, learnable explicit representations have been introduced for combination with implicit NeRF representation, which however results in a large storage space requirement. In this paper, we introduce the Context-based NeRF Compression (CNC) framework, which leverages highly efficient context models to provide a storage-friendly NeRF representation. Specifically, we excavate both level-wise and dimension-wise context dependencies to enable probability prediction for information entropy reduction. Additionally, we exploit hash collision and occupancy grids as strong prior knowledge for better context modeling. To the best of our knowledge, we are the first to construct and exploit context models for NeRF compression. We achieve a size reduction of 100$\times$ and 70$\times$ with improved fidelity against the baseline Instant-NGP on Synthesic-NeRF and Tanks and Temples datasets, respectively. Additionally, we attain 86.7\% and 82.3\% storage size reduction against the SOTA NeRF compression method BiRF. Our code is available here: https://github.com/YihangChen-ee/CNC.
Abstract:Real-world systems often encounter new data over time, which leads to experiencing target domain shifts. Existing Test-Time Adaptation (TTA) methods tend to apply computationally heavy and memory-intensive backpropagation-based approaches to handle this. Here, we propose a novel method that uses a backpropagation-free approach for TTA for the specific case of 3D data. Our model uses a two-stream architecture to maintain knowledge about the source domain as well as complementary target-domain-specific information. The backpropagation-free property of our model helps address the well-known forgetting problem and mitigates the error accumulation issue. The proposed method also eliminates the need for the usually noisy process of pseudo-labeling and reliance on costly self-supervised training. Moreover, our method leverages subspace learning, effectively reducing the distribution variance between the two domains. Furthermore, the source-domain-specific and the target-domain-specific streams are aligned using a novel entropy-based adaptive fusion strategy. Extensive experiments on popular benchmarks demonstrate the effectiveness of our method. The code will be available at https://github.com/abie-e/BFTT3D.
Abstract:Federated Class-Incremental Learning (FCIL) is an underexplored yet pivotal issue, involving the dynamic addition of new classes in the context of federated learning. In this field, Data-Free Knowledge Transfer (DFKT) plays a crucial role in addressing catastrophic forgetting and data privacy problems. However, prior approaches lack the crucial synergy between DFKT and the model training phases, causing DFKT to encounter difficulties in generating high-quality data from a non-anchored latent space of the old task model. In this paper, we introduce LANDER (Label Text Centered Data-Free Knowledge Transfer) to address this issue by utilizing label text embeddings (LTE) produced by pretrained language models. Specifically, during the model training phase, our approach treats LTE as anchor points and constrains the feature embeddings of corresponding training samples around them, enriching the surrounding area with more meaningful information. In the DFKT phase, by using these LTE anchors, LANDER can synthesize more meaningful samples, thereby effectively addressing the forgetting problem. Additionally, instead of tightly constraining embeddings toward the anchor, the Bounding Loss is introduced to encourage sample embeddings to remain flexible within a defined radius. This approach preserves the natural differences in sample embeddings and mitigates the embedding overlap caused by heterogeneous federated settings. Extensive experiments conducted on CIFAR100, Tiny-ImageNet, and ImageNet demonstrate that LANDER significantly outperforms previous methods and achieves state-of-the-art performance in FCIL. The code is available at https://github.com/tmtuan1307/lander.
Abstract:3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To address this, we make use of the relations between the unorganized anchors and the structured hash grid, leveraging their mutual information for context modeling, and propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation. Our approach introduces a binary hash grid to establish continuous spatial consistencies, allowing us to unveil the inherent spatial relations of anchors through a carefully designed context model. To facilitate entropy coding, we utilize Gaussian distributions to accurately estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Additionally, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Importantly, our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over $75\times$ compared to vanilla 3DGS, while simultaneously improving fidelity, and achieving over $11\times$ size reduction over SOTA 3DGS compression approach Scaffold-GS. Our code is available here: https://github.com/YihangChen-ee/HAC
Abstract:Machine unlearning has become a pivotal task to erase the influence of data from a trained model. It adheres to recent data regulation standards and enhances the privacy and security of machine learning applications. Most existing machine unlearning methods perform well, however, they typically necessitate access to the entirety of the remaining data, which might not be feasible in certain scenarios. In this work, we present a new machine unlearning approach Scissorhands, which operates effectively with only a subset of the training data. Initially, Scissorhands identifies the most pertinent parameters in the given model relative to the forgetting data via connection sensitivity. This process involves reinitializing the most influential top-$k$ percent of these parameters, resulting in a trimmed model for erasing the influence of the forgetting data. Subsequently, Scissorhands retrains the trimmed model through a min-max optimization process, seeking parameters that preserve information on the remaining data while discarding information related to the forgetting data. Our experimental results, conducted across five distinct datasets and utilizing both CNN and ViT, demonstrate that Scissorhands, despite utilizing only a limited portion of the training data, showcases competitive performance when compared to existing methods.