Abstract:High-quality video-text preference data is crucial for Multimodal Large Language Models (MLLMs) alignment. However, existing preference data is very scarce. Obtaining VQA preference data for preference training is costly, and manually annotating responses is highly unreliable, which could result in low-quality pairs. Meanwhile, AI-generated responses controlled by temperature adjustment lack diversity. To address these issues, we propose a high-quality VQA preference dataset, called \textit{\textbf{M}ultiple \textbf{M}ultimodal \textbf{A}rtificial \textbf{I}ntelligence \textbf{P}reference Datasets in \textbf{V}QA} (\textbf{MMAIP-V}), which is constructed by sampling from the response distribution set and using an external scoring function for response evaluation. Furthermore, to fully leverage the preference knowledge in MMAIP-V and ensure sufficient optimization, we propose \textit{\textbf{Iter}ative \textbf{W}eak-to-\textbf{S}trong \textbf{R}einforcement \textbf{L}earning from \textbf{AI} \textbf{F}eedback for video MLLMs} (\textbf{Iter-W2S-RLAIF}), a framework that gradually enhances MLLMs' alignment capabilities by iteratively updating the reference model and performing parameter extrapolation. Finally, we propose an unbiased and information-complete evaluation scheme in VQA evaluation. Experiments demonstrate that MMAIP-V is beneficial for MLLMs in preference learning and Iter-W2S-RLAIF fully exploits the alignment information in MMAIP-V. We believe that the proposed automatic VQA preference data generation pipeline based on AI feedback can greatly promote future work in the MLLMs alignment. \textbf{Code and dataset are available} \href{https://anonymous.4open.science/r/MMAIP-V_Iter-W2S-RLAIF-702F}{MMAIP-V\_Iter-W2S-RLAIF-702F}.
Abstract:Enhancing the conformity of large language models (LLMs) to human preferences remains an ongoing research challenge. Recently, offline approaches such as Direct Preference Optimization (DPO) have gained prominence as attractive options due to offering effective improvement in simple, efficient, and stable without interactions with reward models. However, these offline preference optimization methods highly rely on the quality of pairwise preference samples. Meanwhile, numerous iterative methods require additional training of reward models to select positive and negative samples from the model's own generated responses for preference learning. Furthermore, as LLMs' capabilities advance, it is quite challenging to continuously construct high-quality positive and negative preference instances from the model's outputs due to the lack of diversity. To tackle these challenges, we propose TSO, or Self-Training with Scaled Preference Optimization, a framework for preference optimization that conducts self-training preference learning without training an additional reward model. TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses. Furthermore, TSO introduces corrections for model preference errors through human and AI feedback. Finally, TSO adopts iterative and dual clip reward strategies to update the reference model and its responses, adaptively adjusting preference data and balancing the optimization process. Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks, providing practical insight into preference data construction and model training strategies in the alignment domain.