Abstract:Recent Multimodal Large Language Models(MLLMs) often use a large number of visual tokens to compensate their visual shortcoming, leading to excessive computation and obvious visual redundancy. In this paper, we investigate what kind of visual tokens are needed for MLLMs, and reveal that both foreground and background tokens are critical for MLLMs given the varying difficulties of examples. Based on this observation, we propose a graph-based method towards training-free visual token pruning, termed G-Prune.In particular, G-Prune regards visual tokens as nodes, and construct their connections based on their semantic similarities. Afterwards, the information flow is propagated via weighted links, and the most important tokens after iterations are kept for MLLMs, which can be front or background.To validate G-Prune, we apply it to a recent MLLM called LLaVA-NeXT, and conduct extensive experiments on a set of benchmarks.The experiment results show that G-Prune can greatly reduce computation overhead while retaining high performance on both coarse- and fine-grained tasks. For instance, G-Prune can reduce 63.57\% FLOPs of LLaVA-NeXT on VQA2.0 and TextVQA with only 0.95\% and 2.34\% accuracy drops, respectively.
Abstract:Face Restoration (FR) is a crucial area within image and video processing, focusing on reconstructing high-quality portraits from degraded inputs. Despite advancements in image FR, video FR remains relatively under-explored, primarily due to challenges related to temporal consistency, motion artifacts, and the limited availability of high-quality video data. Moreover, traditional face restoration typically prioritizes enhancing resolution and may not give as much consideration to related tasks such as facial colorization and inpainting. In this paper, we propose a novel approach for the Generalized Video Face Restoration (GVFR) task, which integrates video BFR, inpainting, and colorization tasks that we empirically show to benefit each other. We present a unified framework, termed as stable video face restoration (SVFR), which leverages the generative and motion priors of Stable Video Diffusion (SVD) and incorporates task-specific information through a unified face restoration framework. A learnable task embedding is introduced to enhance task identification. Meanwhile, a novel Unified Latent Regularization (ULR) is employed to encourage the shared feature representation learning among different subtasks. To further enhance the restoration quality and temporal stability, we introduce the facial prior learning and the self-referred refinement as auxiliary strategies used for both training and inference. The proposed framework effectively combines the complementary strengths of these tasks, enhancing temporal coherence and achieving superior restoration quality. This work advances the state-of-the-art in video FR and establishes a new paradigm for generalized video face restoration. Code and video demo are available at https://github.com/wangzhiyaoo/SVFR.git.
Abstract:Despite a big leap forward in capability, multimodal large language models (MLLMs) tend to behave like a sloth in practical use, i.e., slow response and large latency. Recent efforts are devoted to building tiny MLLMs for better efficiency, but the plethora of visual tokens still used limit their actual speedup. In this paper, we propose a powerful and fast tiny MLLM called FlashSloth. Different from previous efforts, FlashSloth focuses on improving the descriptive power of visual tokens in the process of compressing their redundant semantics. In particular, FlashSloth introduces embedded visual compression designs to capture both visually salient and instruction-related image information, so as to achieving superior multimodal performance with fewer visual tokens. Extensive experiments are conducted to validate the proposed FlashSloth, and a bunch of tiny but strong MLLMs are also comprehensively compared, e.g., InternVL2, MiniCPM-V2 and Qwen2-VL. The experimental results show that compared with these advanced tiny MLLMs, our FlashSloth can greatly reduce the number of visual tokens, training memory and computation complexity while retaining high performance on various VL tasks.
Abstract:The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is anonymously released at https://github.com/DoubtedSteam/DyVTE.
Abstract:Despite the significant progress in multimodal large language models (MLLMs), their high computational cost remains a barrier to real-world deployment. Inspired by the mixture of depths (MoDs) in natural language processing, we aim to address this limitation from the perspective of ``activated tokens''. Our key insight is that if most tokens are redundant for the layer computation, then can be skipped directly via the MoD layer. However, directly converting the dense layers of MLLMs to MoD layers leads to substantial performance degradation. To address this issue, we propose an innovative MoD adaptation strategy for existing MLLMs called $\gamma$-MoD. In $\gamma$-MoD, a novel metric is proposed to guide the deployment of MoDs in the MLLM, namely rank of attention maps (ARank). Through ARank, we can effectively identify which layer is redundant and should be replaced with the MoD layer. Based on ARank, we further propose two novel designs to maximize the computational sparsity of MLLM while maintaining its performance, namely shared vision-language router and masked routing learning. With these designs, more than 90% dense layers of the MLLM can be effectively converted to the MoD ones. To validate our method, we apply it to three popular MLLMs, and conduct extensive experiments on 9 benchmark datasets. Experimental results not only validate the significant efficiency benefit of $\gamma$-MoD to existing MLLMs but also confirm its generalization ability on various MLLMs. For example, with a minor performance drop, i.e., -1.5%, $\gamma$-MoD can reduce the training and inference time of LLaVA-HR by 31.0% and 53.2%, respectively.
Abstract:Recent progress in Multimodal Large Language Models(MLLMs) often use large image tokens to compensate the visual shortcoming of MLLMs, which not only exhibits obvious redundancy but also greatly exacerbates the already high computation. Token pruning is an effective solution for speeding up MLLMs, but when and how to drop tokens still remains a challenge. In this paper, we propose a novel and training-free approach for the effective visual token pruning of MLLMs, termed FitPrune, which can quickly produce a complete pruning recipe for MLLMs according to a pre-defined budget. Specifically, FitPrune considers token pruning as a statistical problem of MLLM and its objective is to find out an optimal pruning scheme that can minimize the divergence of the attention distributions before and after pruning. In practice, FitPrune can be quickly accomplished based on the attention statistics from a small batch of inference data, avoiding the expensive trials of MLLMs. According to the pruning recipe, an MLLM can directly remove the redundant visual tokens of different examples during inference. To validate FitPrune, we apply it to a set of recent MLLMs, including LLaVA-1.5, LLaVA-HR and LLaVA-NEXT, and conduct extensive experiments on a set of benchmarks. The experimental results show that our FitPrune can not only reduce the computational complexity to a large extent, while retaining high performance, e.g., -54.9% FLOPs for LLaVA-NEXT with only 0.5% accuracy drop. Notably, the pruning recipe can be obtained in about 5 minutes. Our code is available at https://github.com/ywh187/FitPrune.
Abstract:This paper explores a novel dynamic network for vision and language tasks, where the inferring structure is customized on the fly for different inputs. Most previous state-of-the-art approaches are static and hand-crafted networks, which not only heavily rely on expert knowledge, but also ignore the semantic diversity of input samples, therefore resulting in suboptimal performance. To address these issues, we propose a novel Dynamic Transformer Network (DTNet) for image captioning, which dynamically assigns customized paths to different samples, leading to discriminative yet accurate captions. Specifically, to build a rich routing space and improve routing efficiency, we introduce five types of basic cells and group them into two separate routing spaces according to their operating domains, i.e., spatial and channel. Then, we design a Spatial-Channel Joint Router (SCJR), which endows the model with the capability of path customization based on both spatial and channel information of the input sample. To validate the effectiveness of our proposed DTNet, we conduct extensive experiments on the MS-COCO dataset and achieve new state-of-the-art performance on both the Karpathy split and the online test server.
Abstract:Segment Anything Model (SAM) exhibits powerful yet versatile capabilities on (un) conditional image segmentation tasks recently. Although SAM can support various segmentation prompts, we note that, compared to point- and box-guided segmentation, it performs much worse on text-instructed tasks. We argue that deep text instruction tuning is key to mitigate such shortcoming caused by the shallow fusion scheme in its default light-weight mask decoder. In this paper, two \emph{deep instruction tuning} (DIT) methods are proposed, one is end-to-end and the other is layer-wise. With these tuning methods, we can regard the image encoder of SAM as a stand-alone vision-language learner in contrast to building another deep fusion branch. Extensive experiments on three highly competitive benchmark datasets of referring image segmentation show that a simple end-to-end DIT improves SAM by a large margin, with layer-wise DIT further boosts the performance to state-of-the-art. Our code is anonymously released at: https://github.com/wysnzzzz/DIT.
Abstract:In this paper, we propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs), termed Efficient Attention Skipping (EAS). Concretely, we first reveal that multi-head attentions (MHAs), the main computational overhead of MLLMs, are often redundant to downstream tasks. Based on this observation, EAS evaluates the attention redundancy and skips the less important MHAs to speed up inference. Besides, we also propose a novel propagation-of-information adapter (PIA) to serve the attention skipping of EAS and keep parameter efficiency, which can be further re-parameterized into feed-forward networks (FFNs) for zero-extra latency. To validate EAS, we apply it to a recently proposed MLLM called LaVIN and a classic VL pre-trained model called METER, and conduct extensive experiments on a set of benchmarks. The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed. For instance, LaVIN-EAS can obtain 89.98\% accuracy on ScineceQA while speeding up inference by 2.2 times to LaVIN
Abstract:Text-to-3D-aware face (T3D Face) generation and manipulation is an emerging research hot spot in machine learning, which still suffers from low efficiency and poor quality. In this paper, we propose an End-to-End Efficient and Effective network for fast and accurate T3D face generation and manipulation, termed $E^3$-FaceNet. Different from existing complex generation paradigms, $E^3$-FaceNet resorts to a direct mapping from text instructions to 3D-aware visual space. We introduce a novel Style Code Enhancer to enhance cross-modal semantic alignment, alongside an innovative Geometric Regularization objective to maintain consistency across multi-view generations. Extensive experiments on three benchmark datasets demonstrate that $E^3$-FaceNet can not only achieve picture-like 3D face generation and manipulation, but also improve inference speed by orders of magnitudes. For instance, compared with Latent3D, $E^3$-FaceNet speeds up the five-view generations by almost 470 times, while still exceeding in generation quality. Our code are released at https://github.com/Aria-Zhangjl/E3-FaceNet.