Abstract:3D Referring Expression Segmentation (3D-RES) aims to segment point cloud scenes based on a given expression. However, existing 3D-RES approaches face two major challenges: feature ambiguity and intent ambiguity. Feature ambiguity arises from information loss or distortion during point cloud acquisition due to limitations such as lighting and viewpoint. Intent ambiguity refers to the model's equal treatment of all queries during the decoding process, lacking top-down task-specific guidance. In this paper, we introduce an Image enhanced Prompt Decoding Network (IPDN), which leverages multi-view images and task-driven information to enhance the model's reasoning capabilities. To address feature ambiguity, we propose the Multi-view Semantic Embedding (MSE) module, which injects multi-view 2D image information into the 3D scene and compensates for potential spatial information loss. To tackle intent ambiguity, we designed a Prompt-Aware Decoder (PAD) that guides the decoding process by deriving task-driven signals from the interaction between the expression and visual features. Comprehensive experiments demonstrate that IPDN outperforms the state-ofthe-art by 1.9 and 4.2 points in mIoU metrics on the 3D-RES and 3D-GRES tasks, respectively.
Abstract:3D Referring Expression Segmentation (3D-RES) aims to segment 3D objects by correlating referring expressions with point clouds. However, traditional approaches frequently encounter issues like over-segmentation or mis-segmentation, due to insufficient emphasis on spatial information of instances. In this paper, we introduce a Rule-Guided Spatial Awareness Network (RG-SAN) by utilizing solely the spatial information of the target instance for supervision. This approach enables the network to accurately depict the spatial relationships among all entities described in the text, thus enhancing the reasoning capabilities. The RG-SAN consists of the Text-driven Localization Module (TLM) and the Rule-guided Weak Supervision (RWS) strategy. The TLM initially locates all mentioned instances and iteratively refines their positional information. The RWS strategy, acknowledging that only target objects have supervised positional information, employs dependency tree rules to precisely guide the core instance's positioning. Extensive testing on the ScanRefer benchmark has shown that RG-SAN not only establishes new performance benchmarks, with an mIoU increase of 5.1 points, but also exhibits significant improvements in robustness when processing descriptions with spatial ambiguity. All codes are available at https://github.com/sosppxo/RG-SAN.
Abstract:Recent progress in 3D object generation has been fueled by the strong priors offered by diffusion models. However, existing models are tailored to specific tasks, accommodating only one modality at a time and necessitating retraining to change modalities. Given an image-to-3D model and a text prompt, a naive approach is to convert text prompts to images and then use the image-to-3D model for generation. This approach is both time-consuming and labor-intensive, resulting in unavoidable information loss during modality conversion. To address this, we introduce XBind, a unified framework for any-to-3D generation using cross-modal pre-alignment techniques. XBind integrates an multimodal-aligned encoder with pre-trained diffusion models to generate 3D objects from any modalities, including text, images, and audio. We subsequently present a novel loss function, termed Modality Similarity (MS) Loss, which aligns the embeddings of the modality prompts and the rendered images, facilitating improved alignment of the 3D objects with multiple modalities. Additionally, Hybrid Diffusion Supervision combined with a Three-Phase Optimization process improves the quality of the generated 3D objects. Extensive experiments showcase XBind's broad generation capabilities in any-to-3D scenarios. To our knowledge, this is the first method to generate 3D objects from any modality prompts. Project page: https://zeroooooooow1440.github.io/.
Abstract:Significant progress has been made in the field of Instruction-based Image Editing (IIE). However, evaluating these models poses a significant challenge. A crucial requirement in this field is the establishment of a comprehensive evaluation benchmark for accurately assessing editing results and providing valuable insights for its further development. In response to this need, we propose I2EBench, a comprehensive benchmark designed to automatically evaluate the quality of edited images produced by IIE models from multiple dimensions. I2EBench consists of 2,000+ images for editing, along with 4,000+ corresponding original and diverse instructions. It offers three distinctive characteristics: 1) Comprehensive Evaluation Dimensions: I2EBench comprises 16 evaluation dimensions that cover both high-level and low-level aspects, providing a comprehensive assessment of each IIE model. 2) Human Perception Alignment: To ensure the alignment of our benchmark with human perception, we conducted an extensive user study for each evaluation dimension. 3) Valuable Research Insights: By analyzing the advantages and disadvantages of existing IIE models across the 16 dimensions, we offer valuable research insights to guide future development in the field. We will open-source I2EBench, including all instructions, input images, human annotations, edited images from all evaluated methods, and a simple script for evaluating the results from new IIE models. The code, dataset and generated images from all IIE models are provided in github: https://github.com/cocoshe/I2EBench.
Abstract:3D Referring Expression Segmentation (3D-RES) is dedicated to segmenting a specific instance within a 3D space based on a natural language description. However, current approaches are limited to segmenting a single target, restricting the versatility of the task. To overcome this limitation, we introduce Generalized 3D Referring Expression Segmentation (3D-GRES), which extends the capability to segment any number of instances based on natural language instructions. In addressing this broader task, we propose the Multi-Query Decoupled Interaction Network (MDIN), designed to break down multi-object segmentation tasks into simpler, individual segmentations. MDIN comprises two fundamental components: Text-driven Sparse Queries (TSQ) and Multi-object Decoupling Optimization (MDO). TSQ generates sparse point cloud features distributed over key targets as the initialization for queries. Meanwhile, MDO is tasked with assigning each target in multi-object scenarios to different queries while maintaining their semantic consistency. To adapt to this new task, we build a new dataset, namely Multi3DRes. Our comprehensive evaluations on this dataset demonstrate substantial enhancements over existing models, thus charting a new path for intricate multi-object 3D scene comprehension. The benchmark and code are available at https://github.com/sosppxo/MDIN.
Abstract:With advancements in data availability and computing resources, Multimodal Large Language Models (MLLMs) have showcased capabilities across various fields. However, the quadratic complexity of the vision encoder in MLLMs constrains the resolution of input images. Most current approaches mitigate this issue by cropping high-resolution images into smaller sub-images, which are then processed independently by the vision encoder. Despite capturing sufficient local details, these sub-images lack global context and fail to interact with one another. To address this limitation, we propose a novel MLLM, INF-LLaVA, designed for effective high-resolution image perception. INF-LLaVA incorporates two innovative components. First, we introduce a Dual-perspective Cropping Module (DCM), which ensures that each sub-image contains continuous details from a local perspective and comprehensive information from a global perspective. Second, we introduce Dual-perspective Enhancement Module (DEM) to enable the mutual enhancement of global and local features, allowing INF-LLaVA to effectively process high-resolution images by simultaneously capturing detailed local information and comprehensive global context. Extensive ablation studies validate the effectiveness of these components, and experiments on a diverse set of benchmarks demonstrate that INF-LLaVA outperforms existing MLLMs. Code and pretrained model are available at https://github.com/WeihuangLin/INF-LLaVA.
Abstract:3D referring expression comprehension (3DREC) and segmentation (3DRES) have overlapping objectives, indicating their potential for collaboration. However, existing collaborative approaches predominantly depend on the results of one task to make predictions for the other, limiting effective collaboration. We argue that employing separate branches for 3DREC and 3DRES tasks enhances the model's capacity to learn specific information for each task, enabling them to acquire complementary knowledge. Thus, we propose the MCLN framework, which includes independent branches for 3DREC and 3DRES tasks. This enables dedicated exploration of each task and effective coordination between the branches. Furthermore, to facilitate mutual reinforcement between these branches, we introduce a Relative Superpoint Aggregation (RSA) module and an Adaptive Soft Alignment (ASA) module. These modules significantly contribute to the precise alignment of prediction results from the two branches, directing the module to allocate increased attention to key positions. Comprehensive experimental evaluation demonstrates that our proposed method achieves state-of-the-art performance on both the 3DREC and 3DRES tasks, with an increase of 2.05% in Acc@0.5 for 3DREC and 3.96% in mIoU for 3DRES.
Abstract:Recently, diffusion models have increasingly demonstrated their capabilities in vision understanding. By leveraging prompt-based learning to construct sentences, these models have shown proficiency in classification and visual grounding tasks. However, existing approaches primarily showcase their ability to perform sentence-level localization, leaving the potential for leveraging contextual information for phrase-level understanding largely unexplored. In this paper, we utilize Panoptic Narrative Grounding (PNG) as a proxy task to investigate this capability further. PNG aims to segment object instances mentioned by multiple noun phrases within a given narrative text. Specifically, we introduce the DiffPNG framework, a straightforward yet effective approach that fully capitalizes on the diffusion's architecture for segmentation by decomposing the process into a sequence of localization, segmentation, and refinement steps. The framework initially identifies anchor points using cross-attention mechanisms and subsequently performs segmentation with self-attention to achieve zero-shot PNG. Moreover, we introduce a refinement module based on SAM to enhance the quality of the segmentation masks. Our extensive experiments on the PNG dataset demonstrate that DiffPNG achieves strong performance in the zero-shot PNG task setting, conclusively proving the diffusion model's capability for context-aware, phrase-level understanding. Source code is available at \url{https://github.com/nini0919/DiffPNG}.
Abstract:This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.
Abstract:Text-based person retrieval (TPR) is a challenging task that involves retrieving a specific individual based on a textual description. Despite considerable efforts to bridge the gap between vision and language, the significant differences between these modalities continue to pose a challenge. Previous methods have attempted to align text and image samples in a modal-shared space, but they face uncertainties in optimization directions due to the movable features of both modalities and the failure to account for one-to-many relationships of image-text pairs in TPR datasets. To address this issue, we propose an effective bi-directional one-to-many embedding paradigm that offers a clear optimization direction for each sample, thus mitigating the optimization problem. Additionally, this embedding scheme generates multiple features for each sample without introducing trainable parameters, making it easier to align with several positive samples. Based on this paradigm, we propose a novel Bi-directional one-to-many Embedding Alignment (Beat) model to address the TPR task. Our experimental results demonstrate that the proposed Beat model achieves state-of-the-art performance on three popular TPR datasets, including CUHK-PEDES (65.61 R@1), ICFG-PEDES (58.25 R@1), and RSTPReID (48.10 R@1). Furthermore, additional experiments on MS-COCO, CUB, and Flowers datasets further demonstrate the potential of Beat to be applied to other image-text retrieval tasks.