Abstract:The diffusion of deepfake technologies has sparked serious concerns about its potential misuse across various domains, prompting the urgent need for robust detection methods. Despite advancement, many current approaches prioritize short-term gains at expense of long-term effectiveness. This paper critiques the overly specialized approach of fine-tuning pre-trained models solely with a penny-wise objective on a single deepfake dataset, while disregarding the pound-wise balance for generalization and knowledge retention. To address this "Penny-Wise and Pound-Foolish" issue, we propose a novel learning framework (PoundNet) for generalization of deepfake detection on a pre-trained vision-language model. PoundNet incorporates a learnable prompt design and a balanced objective to preserve broad knowledge from upstream tasks (object classification) while enhancing generalization for downstream tasks (deepfake detection). We train PoundNet on a standard single deepfake dataset, following common practice in the literature. We then evaluate its performance across 10 public large-scale deepfake datasets with 5 main evaluation metrics-forming the largest benchmark test set for assessing the generalization ability of deepfake detection models, to our knowledge. The comprehensive benchmark evaluation demonstrates the proposed PoundNet is significantly less "Penny-Wise and Pound-Foolish", achieving a remarkable improvement of 19% in deepfake detection performance compared to state-of-the-art methods, while maintaining a strong performance of 63% on object classification tasks, where other deepfake detection models tend to be ineffective. Code and data are open-sourced at https://github.com/iamwangyabin/PoundNet.
Abstract:Multi-modal crowd counting is a crucial task that uses multi-modal cues to estimate the number of people in crowded scenes. To overcome the gap between different modalities, we propose a modal emulation-based two-pass multi-modal crowd-counting framework that enables efficient modal emulation, alignment, and fusion. The framework consists of two key components: a \emph{multi-modal inference} pass and a \emph{cross-modal emulation} pass. The former utilizes a hybrid cross-modal attention module to extract global and local information and achieve efficient multi-modal fusion. The latter uses attention prompting to coordinate different modalities and enhance multi-modal alignment. We also introduce a modality alignment module that uses an efficient modal consistency loss to align the outputs of the two passes and bridge the semantic gap between modalities. Extensive experiments on both RGB-Thermal and RGB-Depth counting datasets demonstrate its superior performance compared to previous methods. Code available at https://github.com/Mr-Monday/Multi-modal-Crowd-Counting-via-Modal-Emulation.
Abstract:Continual Test-Time Adaptation (CTTA) involves adapting a pre-trained source model to continually changing unsupervised target domains. In this paper, we systematically analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting under continual domain shifts. To address these challenges, we reshape the online data buffering and organizing mechanism for CTTA. We propose an {uncertainty-aware buffering approach} to identify {and aggregate} significant samples with high certainty from the unsupervised, single-pass data stream. {Based on this}, we propose a graph-based class relation preservation constraint to overcome catastrophic forgetting. Furthermore, a pseudo-target replay objective is used to mitigate error accumulation. Extensive experiments demonstrate the superiority of our method in both segmentation and classification CTTA tasks. Code is available at \href{https://github.com/z1358/OBAO}{this https URL}.
Abstract:Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images. This task is challenging due to the significant gap between these distinct modalities. In this paper, we propose a novel approach by introducing an auxiliary broker modality and on this basis frame the task as a triple-modal learning problem. We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models. Additionally, we identify and address the ghosting effect caused by direct cross-modal image fusion in multi-modal crowd counting. Through extensive experimental evaluations on popular multi-modal crowd-counting datasets, we demonstrate the effectiveness of our method, which introduces only 4 million additional parameters, yet achieves promising results. The code is available at https://github.com/HenryCilence/Broker-Modality-Crowd-Counting.
Abstract:Diffusion models have shown superior performance on unsupervised anomaly detection tasks. Since trained with normal data only, diffusion models tend to reconstruct normal counterparts of test images with certain noises added. However, these methods treat all potential anomalies equally, which may cause two main problems. From the global perspective, the difficulty of reconstructing images with different anomalies is uneven. Therefore, instead of utilizing the same setting for all samples, we propose to predict a particular denoising step for each sample by evaluating the difference between image contents and the priors extracted from diffusion models. From the local perspective, reconstructing abnormal regions differs from normal areas even in the same image. Theoretically, the diffusion model predicts a noise for each step, typically following a standard Gaussian distribution. However, due to the difference between the anomaly and its potential normal counterpart, the predicted noise in abnormal regions will inevitably deviate from the standard Gaussian distribution. To this end, we propose introducing synthetic abnormal samples in training to encourage the diffusion models to break through the limitation of standard Gaussian distribution, and a spatial-adaptive feature fusion scheme is utilized during inference. With the above modifications, we propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection, which introduces appealing flexibility and achieves anomaly-free reconstruction while retaining as much normal information as possible. Extensive experiments are conducted on three commonly used anomaly detection datasets (MVTec-AD, MPDD, and VisA) and a printed circuit board dataset (PCB-Bank) we integrated, showing the effectiveness of the proposed method.
Abstract:This paper explores a novel dynamic network for vision and language tasks, where the inferring structure is customized on the fly for different inputs. Most previous state-of-the-art approaches are static and hand-crafted networks, which not only heavily rely on expert knowledge, but also ignore the semantic diversity of input samples, therefore resulting in suboptimal performance. To address these issues, we propose a novel Dynamic Transformer Network (DTNet) for image captioning, which dynamically assigns customized paths to different samples, leading to discriminative yet accurate captions. Specifically, to build a rich routing space and improve routing efficiency, we introduce five types of basic cells and group them into two separate routing spaces according to their operating domains, i.e., spatial and channel. Then, we design a Spatial-Channel Joint Router (SCJR), which endows the model with the capability of path customization based on both spatial and channel information of the input sample. To validate the effectiveness of our proposed DTNet, we conduct extensive experiments on the MS-COCO dataset and achieve new state-of-the-art performance on both the Karpathy split and the online test server.
Abstract:Contemporary continual learning approaches typically select prompts from a pool, which function as supplementary inputs to a pre-trained model. However, this strategy is hindered by the inherent noise of its selection approach when handling increasing tasks. In response to these challenges, we reformulate the prompting approach for continual learning and propose the prompt customization (PC) method. PC mainly comprises a prompt generation module (PGM) and a prompt modulation module (PMM). In contrast to conventional methods that employ hard prompt selection, PGM assigns different coefficients to prompts from a fixed-sized pool of prompts and generates tailored prompts. Moreover, PMM further modulates the prompts by adaptively assigning weights according to the correlations between input data and corresponding prompts. We evaluate our method on four benchmark datasets for three diverse settings, including the class, domain, and task-agnostic incremental learning tasks. Experimental results demonstrate consistent improvement (by up to 16.2\%), yielded by the proposed method, over the state-of-the-art (SOTA) techniques.
Abstract:Temporal video grounding (TVG) is a critical task in video content understanding. Despite significant advancements, existing methods often limit in capturing the fine-grained relationships between multimodal inputs and the high computational costs with processing long video sequences. To address these limitations, we introduce a novel SpikeMba: multi-modal spiking saliency mamba for temporal video grounding. In our work, we integrate the Spiking Neural Networks (SNNs) and state space models (SSMs) to capture the fine-grained relationships of multimodal features effectively. Specifically, we introduce the relevant slots to enhance the model's memory capabilities, enabling a deeper contextual understanding of video sequences. The contextual moment reasoner leverages these slots to maintain a balance between contextual information preservation and semantic relevance exploration. Simultaneously, the spiking saliency detector capitalizes on the unique properties of SNNs to accurately locate salient proposals. Our experiments demonstrate the effectiveness of SpikeMba, which consistently outperforms state-of-the-art methods across mainstream benchmarks.
Abstract:This paper focuses on semi-supervised crowd counting, where only a small portion of the training data are labeled. We formulate the pixel-wise density value to regress as a probability distribution, instead of a single deterministic value. On this basis, we propose a semi-supervised crowd-counting model. Firstly, we design a pixel-wise distribution matching loss to measure the differences in the pixel-wise density distributions between the prediction and the ground truth; Secondly, we enhance the transformer decoder by using density tokens to specialize the forwards of decoders w.r.t. different density intervals; Thirdly, we design the interleaving consistency self-supervised learning mechanism to learn from unlabeled data efficiently. Extensive experiments on four datasets are performed to show that our method clearly outperforms the competitors by a large margin under various labeled ratio settings. Code will be released at https://github.com/LoraLinH/Semi-supervised-Counting-via-Pixel-by-pixel-Density-Distribution-Modelling.
Abstract:Transformer has been popular in recent crowd counting work since it breaks the limited receptive field of traditional CNNs. However, since crowd images always contain a large number of similar patches, the self-attention mechanism in Transformer tends to find a homogenized solution where the attention maps of almost all patches are identical. In this paper, we address this problem by proposing Gramformer: a graph-modulated transformer to enhance the network by adjusting the attention and input node features respectively on the basis of two different types of graphs. Firstly, an attention graph is proposed to diverse attention maps to attend to complementary information. The graph is building upon the dissimilarities between patches, modulating the attention in an anti-similarity fashion. Secondly, a feature-based centrality encoding is proposed to discover the centrality positions or importance of nodes. We encode them with a proposed centrality indices scheme to modulate the node features and similarity relationships. Extensive experiments on four challenging crowd counting datasets have validated the competitiveness of the proposed method. Code is available at {https://github.com/LoraLinH/Gramformer}.