Abstract:We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
Abstract:We propose a novel text-to-video (T2V) generation benchmark, ChronoMagic-Bench, to evaluate the temporal and metamorphic capabilities of the T2V models (e.g. Sora and Lumiere) in time-lapse video generation. In contrast to existing benchmarks that focus on the visual quality and textual relevance of generated videos, ChronoMagic-Bench focuses on the model's ability to generate time-lapse videos with significant metamorphic amplitude and temporal coherence. The benchmark probes T2V models for their physics, biology, and chemistry capabilities, in a free-form text query. For these purposes, ChronoMagic-Bench introduces 1,649 prompts and real-world videos as references, categorized into four major types of time-lapse videos: biological, human-created, meteorological, and physical phenomena, which are further divided into 75 subcategories. This categorization comprehensively evaluates the model's capacity to handle diverse and complex transformations. To accurately align human preference with the benchmark, we introduce two new automatic metrics, MTScore and CHScore, to evaluate the videos' metamorphic attributes and temporal coherence. MTScore measures the metamorphic amplitude, reflecting the degree of change over time, while CHScore assesses the temporal coherence, ensuring the generated videos maintain logical progression and continuity. Based on the ChronoMagic-Bench, we conduct comprehensive manual evaluations of ten representative T2V models, revealing their strengths and weaknesses across different categories of prompts, and providing a thorough evaluation framework that addresses current gaps in video generation research. Moreover, we create a large-scale ChronoMagic-Pro dataset, containing 460k high-quality pairs of 720p time-lapse videos and detailed captions ensuring high physical pertinence and large metamorphic amplitude.